Cours 1 : Théorie des Ensembles, Magmas, Monoïdes.
4 chapitres :
4 chapitres :
Chapitre 2
Groupes abéliens
Anneaux
Énoncé
Énoncé
4 chapitres :
Chapitre 2
Groupes abéliens
Anneaux
Énoncé
Énoncé
Énoncé
Énoncé
4 chapitres :
Chapitre 2
Groupes abéliens
Anneaux
Énoncé
Énoncé
Anneaux
Anneaux
Énoncé
4 chapitres :
Chapitre 2
Groupes abéliens
Anneaux
4 chapitres :
Chapitre 2
Groupes abéliens
Anneaux
4 chapitres :
Groupes abéliens
Chapitre 2
Groupes abéliens
Groupes abéliens
4 chapitres :
4 chapitres :
Chapitre 2
Groupes abéliens
Anneaux
Énoncé
Énoncé
4 chapitres :
4 chapitres :
Chapitre 2
Chapitre 2
Chapitre 2
Anneaux
Algorithmique : DM1
Énoncé
DM Algorithmique avancée :: Polynômes multivariables : appartenance à idéal, division, caractérisation et calcul d’une base d’un idéal
Algorithmique : DM1
DM Algorithmique avancée :: Polynômes multivariables : appartenance à idéal, division, caractérisation et calcul d’une base d’un idéal
Algorithmique : DM1
Théorème d’Euler
Sommaire général
Calcul Formel
Séries Formelles
Crash Course de théorie de l’information
Dictionnaire :
Énoncé
Algorithmes d’approximation
Introduction
DM Algorithmique avancée :: Polynômes multivariables : appartenance à idéal, division, caractérisation et calcul d’une base d’un idéal
Sommaire général
Calcul Formel
Séries Formelles
Crash Course de théorie de l’information
Dictionnaire :
Énoncé
Algorithmique : DM1
Théorème d’Euler
Énoncé
Algorithmes d’approximation
Introduction
Théorème d’Euler
Dictionnaire :
Énoncé
Énoncé
Énoncé
Énoncé
Énoncé
Dictionnaire :
Énoncé
Algorithmique : DM1
Théorème d’Euler
Énoncé
Algorithmes d’approximation
Sommaire général
Calcul Formel
Séries Formelles
Crash Course de théorie de l’information
Dictionnaire :
Énoncé
Théorème d’Euler
Algorithmes d’approximation
Introduction
DM Algorithmique avancée :: Polynômes multivariables : appartenance à idéal, division, caractérisation et calcul d’une base d’un idéal
DM Algorithmique avancée :: Polynômes multivariables : appartenance à idéal, division, caractérisation et calcul d’une base d’un idéal
Algorithmes d’approximation
Dictionnaire :
Dictionnaire :
Calcul Formel
Séries Formelles
DM Algorithmique avancée :: Polynômes multivariables : appartenance à idéal, division, caractérisation et calcul d’une base d’un idéal
Énoncé
Énoncé
Énoncé
Crash Course de théorie de l’information
Algorithmes d’approximation
Crash Course de théorie de l’information
Sommaire général
Calcul Formel
Séries Formelles
Crash Course de théorie de l’information
Dictionnaire :
Théorème d’Euler
Algorithmes d’approximation
Introduction
Dictionnaire :
Théorème d’Euler
Sommaire général
Calcul Formel
Séries Formelles
Crash Course de théorie de l’information
Algorithmes d’approximation
Introduction
Dictionnaire :
Séries Formelles
Crash Course de théorie de l’information
Algorithmes d’approximation
Dictionnaire :
Dictionnaire :
Énoncé
Dictionnaire :
Théorème d’Euler
DM Algorithmique avancée :: Polynômes multivariables : appartenance à idéal, division, caractérisation et calcul d’une base d’un idéal
Sommaire général
Algorithmique : DM1
Énoncé
DM Algorithmique avancée :: Polynômes multivariables : appartenance à idéal, division, caractérisation et calcul d’une base d’un idéal
DM Algorithmique avancée :: Polynômes multivariables : appartenance à idéal, division, caractérisation et calcul d’une base d’un idéal
Énoncé
Introduction
Introduction
Dictionnaire :
Crash Course de théorie de l’information
Énoncé
Neural Cubism
Voting skit
Online Slides
Online Slides
Online Slides
Neural Cubism
Voting skit
Online Slides
Online Slides
Online Slides
Neural Cubism
Neural Cubism
Voting skit
Online Slides
Online Slides
Neural Cubism
Voting skit
Online Slides
Online Slides
Neural Cubism
Voting skit
Neural Cubism
Neural Cubism
Voting skit
Online Slides
Online Slides
Voting skit
Online Slides
Online Slides
Voting skit
Opérations binaires
1. Création d’une machine virtuelle
Codeur
Opérations binaires
4. Codage des caractères dans le terminal
1. Création d’une machine virtuelle
Création du RIM-Linux
1. Création d’une machine virtuelle
Jeu d’instruction Intel x86
Système d’exploitation
Signaux
Mots de passe
Exemple introductif
Création du RIM-Linux
1. Création d’une machine virtuelle
Système d’exploitation
Signaux
Création du RIM-Linux
Exemple introductif
Création du RIM-Linux
4. Codage des caractères dans le terminal
Codeur
Opérations binaires
4. Codage des caractères dans le terminal
1. Création d’une machine virtuelle
Codeur
Opérations binaires
4. Codage des caractères dans le terminal
1. Création d’une machine virtuelle
Création du RIM-Linux
Codeur
Jeu d’instruction Intel x86
Système d’exploitation
Signaux
Mots de passe
Exemple introductif
Opérations binaires
4. Codage des caractères dans le terminal
Mots de passe
Mots de passe
Codeur
Codeur
Exemple introductif
1. Création d’une machine virtuelle
Création du RIM-Linux
Jeu d’instruction Intel x86
Système d’exploitation
Jeu d’instruction Intel x86
Système d’exploitation
Signaux
Mots de passe
Exemple introductif
Jeu d’instruction Intel x86
Opérations binaires
Jeu d’instruction Intel x86
Opérations binaires
Opérations binaires
Codeur
Jeu d’instruction Intel x86
Système d’exploitation
Signaux
Mots de passe
Exemple introductif
Jeu d’instruction Intel x86
4. Codage des caractères dans le terminal
Codeur
Opérations binaires
Jeu d’instruction Intel x86
Exemple introductif
Création du RIM-Linux
Signaux
Système d’exploitation
Exemple introductif
Opérations binaires
Exemple introductif
Mots de passe
Jeu d’instruction Intel x86
new teacher: François Fages
Practical session 1: Systems Biology
Practical session 4: Systems Biology
Practical session 4: Systems Biology
Teacher: Jean Krivine (IRIF)
Recap:
I. Stochastic rewriting
Theoretical Biology Project
Theoretical Biology Project
Theoretical Biology Project
Practical session 1: Systems Biology
Practical session 4: Systems Biology
Practical session 4: Systems Biology
Theoretical Biology Project
Practical session 1: Systems Biology
Practical session 4: Systems Biology
Practical session 4: Systems Biology
Theoretical Biology Project
Theoretical Biology Project
Theoretical Biology Project
Theoretical Biology Project
Teacher: Jean Krivine (IRIF)
Recap:
I. Stochastic rewriting
new teacher: François Fages
Practical session 1: Systems Biology
Practical session 4: Systems Biology
Practical session 4: Systems Biology
Theoretical Biology Project
Calculabilité DM 1 : Virus
Calculabilité DM 1 : Virus
DM de Complexité
Calculabilité DM 1 : Virus
DM de Complexité
Énoncé (pas les mêmes numéros d’exercices)
Énoncé (pas les mêmes numéros d’exercices)
Énoncé (pas les mêmes numéros d’exercices)
Calculabilité DM 1 : Virus
EX 1
DM de Complexité
Énoncé (pas les mêmes numéros d’exercices)
Énoncé (pas les mêmes numéros d’exercices)
Énoncé (pas les mêmes numéros d’exercices)
Introduction
Calculabilité DM 1 : Virus
EX 1
Classe NLOGSPACE = NL
SPACE Hierarchy Theorem
DM de Complexité
SPACE Hierarchy Theorem
Introduction
Classe NLOGSPACE = NL
SPACE Hierarchy Theorem
DM de Complexité
Énoncé (pas les mêmes numéros d’exercices)
Énoncé (pas les mêmes numéros d’exercices)
Énoncé (pas les mêmes numéros d’exercices)
EX 1
Énoncé (pas les mêmes numéros d’exercices)
Énoncé (pas les mêmes numéros d’exercices)
Énoncé (pas les mêmes numéros d’exercices)
EX 1
Énoncé (pas les mêmes numéros d’exercices)
Énoncé (pas les mêmes numéros d’exercices)
Énoncé (pas les mêmes numéros d’exercices)
Énoncé (pas les mêmes numéros d’exercices)
Calculabilité DM 1 : Virus
Énoncé (pas les mêmes numéros d’exercices)
Introduction
EX 1
Classe NLOGSPACE = NL
SPACE Hierarchy Theorem
DM de Complexité
Introduction
Classe NLOGSPACE = NL
SPACE Hierarchy Theorem
Introduction
Classe NLOGSPACE = NL
SPACE Hierarchy Theorem
Énoncé (pas les mêmes numéros d’exercices)
Calculabilité DM 1 : Virus
Énoncé (pas les mêmes numéros d’exercices)
Énoncé (pas les mêmes numéros d’exercices)
Énoncé (pas les mêmes numéros d’exercices)
Introduction
Calculabilité DM 1 : Virus
EX 1
Classe NLOGSPACE = NL
SPACE Hierarchy Theorem
DM de Complexité
Énoncé (pas les mêmes numéros d’exercices)
Calculabilité DM 1 : Virus
Énoncé (pas les mêmes numéros d’exercices)
Calculabilité DM 1 : Virus
Calculabilité DM 1 : Virus
Énoncé (pas les mêmes numéros d’exercices)
Énoncé (pas les mêmes numéros d’exercices)
Calculabilité DM 1 : Virus
DM de Complexité
Énoncé (pas les mêmes numéros d’exercices)
Calculabilité DM 1 : Virus
Introduction
Simply-typed $λ$-calculus
Categories and functors
Adjonction par générateurs et relations
Call-by-value + computational effects ⟶ evaluation strategy
Free monads
Main article: Bayesian Machine Learning via Category Theory (J. Culbertson & K. Sturtz)
EX 1: Categories and functors
EX 1: Free monoids and categories
EX 1: The Yoneda Lemma
EX 1: Algebras for a monad
Equalizers and coequalizers
EX 1: The Yoneda Lemma
EX 1: Algebras for a monad
Equalizers and coequalizers
Main article: Bayesian Machine Learning via Category Theory (J. Culbertson & K. Sturtz)
EX 1: Categories and functors
Introduction
Simply-typed $λ$-calculus
Categories and functors
EX 1: Free monoids and categories
Adjonction par générateurs et relations
EX 1: The Yoneda Lemma
Call-by-value + computational effects ⟶ evaluation strategy
EX 1: Algebras for a monad
Equalizers and coequalizers
Free monads
Main article: Bayesian Machine Learning via Category Theory (J. Culbertson & K. Sturtz)
EX 1: Categories and functors
Introduction
Simply-typed $λ$-calculus
Categories and functors
EX 1: Free monoids and categories
Adjonction par générateurs et relations
EX 1: The Yoneda Lemma
Call-by-value + computational effects ⟶ evaluation strategy
EX 1: Algebras for a monad
Equalizers and coequalizers
Free monads
Main article: Bayesian Machine Learning via Category Theory (J. Culbertson & K. Sturtz)
EX 1: Categories and functors
EX 1: Free monoids and categories
EX 1: The Yoneda Lemma
EX 1: Algebras for a monad
Equalizers and coequalizers
EX 1: The Yoneda Lemma
EX 1: The Yoneda Lemma
EX 1: Categories and functors
Introduction
Simply-typed $λ$-calculus
Categories and functors
EX 1: Free monoids and categories
Adjonction par générateurs et relations
Call-by-value + computational effects ⟶ evaluation strategy
Free monads
Main article: Bayesian Machine Learning via Category Theory (J. Culbertson & K. Sturtz)
EX 1: Categories and functors
Introduction
Simply-typed $λ$-calculus
Categories and functors
EX 1: Free monoids and categories
Adjonction par générateurs et relations
EX 1: The Yoneda Lemma
Call-by-value + computational effects ⟶ evaluation strategy
EX 1: Algebras for a monad
Equalizers and coequalizers
Free monads
Introduction
Simply-typed $λ$-calculus
Categories and functors
Adjonction par générateurs et relations
Call-by-value + computational effects ⟶ evaluation strategy
Free monads
Call-by-value + computational effects ⟶ evaluation strategy
EX 1: Algebras for a monad
Equalizers and coequalizers
Free monads
Main article: Bayesian Machine Learning via Category Theory (J. Culbertson & K. Sturtz)
EX 1: Algebras for a monad
Equalizers and coequalizers
Main article: Bayesian Machine Learning via Category Theory (J. Culbertson & K. Sturtz)
EX 1: The Yoneda Lemma
Main article: Bayesian Machine Learning via Category Theory (J. Culbertson & K. Sturtz)
[\newcommand\yoneda{ {\bf y}} \newcommand\oppositeName{ {\rm op}} \newcommand\opposite[1]{ {#1}^\oppositeName} \newcommand\id[1][{}]{ {\rm id}{#1}} \newcomma...
[\newcommand\yoneda{ {\bf y}} \newcommand\oppositeName{ {\rm op}} \newcommand\opposite[1]{ {#1}^\oppositeName} \newcommand\id[1][{}]{ {\rm id}{#1}} \newcomma...
[\newcommand\yoneda{ {\bf y}} \newcommand\oppositeName{ {\rm op}} \newcommand\opposite[1]{ {#1}^\oppositeName} \newcommand\id[1][{}]{ {\rm id}{#1}} \newcomma...
[\newcommand\yoneda{ {\bf y}} \newcommand\oppositeName{ {\rm op}} \newcommand\opposite[1]{ {#1}^\oppositeName} \newcommand\id[1][{}]{ {\rm id}{#1}} \newcomma...
[\newcommand\yoneda{ {\bf y}} \newcommand\oppositeName{ {\rm op}} \newcommand\opposite[1]{ {#1}^\oppositeName} \newcommand\id[1][{}]{ {\rm id}{#1}} \newcomma...
[\newcommand\yoneda{ {\bf y}} \newcommand\oppositeName{ {\rm op}} \newcommand\opposite[1]{ {#1}^\oppositeName} \newcommand\id[1][{}]{ {\rm id}{#1}} \newcomma...
[\newcommand\yoneda{ {\bf y}} \newcommand\oppositeName{ {\rm op}} \newcommand\opposite[1]{ {#1}^\oppositeName} \newcommand\id[1][{}]{ {\rm id}{#1}} \newcomma...
[\newcommand\yoneda{ {\bf y}} \newcommand\oppositeName{ {\rm op}} \newcommand\opposite[1]{ {#1}^\oppositeName} \newcommand\id[1][{}]{ {\rm id}{#1}} \newcomma...
[\newcommand\yoneda{ {\bf y}} \newcommand\oppositeName{ {\rm op}} \newcommand\opposite[1]{ {#1}^\oppositeName} \newcommand\id[1][{}]{ {\rm id}{#1}} \newcomma...
[\newcommand\yoneda{ {\bf y}} \newcommand\oppositeName{ {\rm op}} \newcommand\opposite[1]{ {#1}^\oppositeName} \newcommand\id[1][{}]{ {\rm id}{#1}} \newcomma...
[\newcommand\yoneda{ {\bf y}} \newcommand\oppositeName{ {\rm op}} \newcommand\opposite[1]{ {#1}^\oppositeName} \newcommand\id[1][{}]{ {\rm id}{#1}} \newcomma...
EX0: BPP-completeness
Proofs to bear in mind
NP, coNP
EX0: BPP-completeness
Proofs to bear in mind
NP, coNP
Homework Assignment : Advanced complexity.
Homework Assignment : Advanced complexity.
RP, coRP, ZPP, BPP
Karp-Lipton
cf. CSE 533: The PCP Theorem and Hardness of approximation (autumn 2005)
EX 1: Graph representation and why it doesn’t matter
EX 1 : Warm up
EX 1: Space hierarchy theorem
EX 1: Language theory
EX 1: Unary languages
Homework Assignment : Advanced complexity.
NP, coNP
EX0: BPP-completeness
Proofs to bear in mind
NP, coNP
Homework Assignment : Advanced complexity.
Outline
Webpage of the course
Immermann-Szelepcsenyi (1987)
Last week:
A visit to the polynomial-time hierarchy
Outline
EX 1: Graph representation and why it doesn’t matter
Webpage of the course
EX 1 : Warm up
Immermann-Szelepcsenyi (1987)
EX 1: Space hierarchy theorem
EX 1: Language theory
Last week:
EX 1: Unary languages
A visit to the polynomial-time hierarchy
RP, coRP, ZPP, BPP
EX0: BPP-completeness
Karp-Lipton
Proofs to bear in mind
cf. CSE 533: The PCP Theorem and Hardness of approximation (autumn 2005)
NP, coNP
Homework Assignment : Advanced complexity.
Outline
EX 1: Graph representation and why it doesn’t matter
Webpage of the course
EX 1 : Warm up
Immermann-Szelepcsenyi (1987)
EX 1: Space hierarchy theorem
EX 1: Language theory
Last week:
EX 1: Unary languages
A visit to the polynomial-time hierarchy
RP, coRP, ZPP, BPP
EX0: BPP-completeness
Karp-Lipton
Proofs to bear in mind
cf. CSE 533: The PCP Theorem and Hardness of approximation (autumn 2005)
NP, coNP
Outline
EX 1: Graph representation and why it doesn’t matter
Webpage of the course
EX 1 : Warm up
Immermann-Szelepcsenyi (1987)
EX 1: Space hierarchy theorem
EX 1: Language theory
Last week:
EX 1: Unary languages
A visit to the polynomial-time hierarchy
RP, coRP, ZPP, BPP
EX0: BPP-completeness
Karp-Lipton
Proofs to bear in mind
cf. CSE 533: The PCP Theorem and Hardness of approximation (autumn 2005)
NP, coNP
Proofs to bear in mind
NP, coNP
EX 1: Graph representation and why it doesn’t matter
EX 1 : Warm up
EX 1: Space hierarchy theorem
EX 1: Language theory
EX 1: Unary languages
EX0: BPP-completeness
Homework Assignment : Advanced complexity.
Homework Assignment : Advanced complexity.
Outline
EX 1: Graph representation and why it doesn’t matter
Webpage of the course
EX 1 : Warm up
Immermann-Szelepcsenyi (1987)
EX 1: Space hierarchy theorem
EX 1: Language theory
Last week:
EX 1: Unary languages
A visit to the polynomial-time hierarchy
RP, coRP, ZPP, BPP
Karp-Lipton
cf. CSE 533: The PCP Theorem and Hardness of approximation (autumn 2005)
Immermann-Szelepcsenyi (1987)
Last week:
A visit to the polynomial-time hierarchy
RP, coRP, ZPP, BPP
Karp-Lipton
cf. CSE 533: The PCP Theorem and Hardness of approximation (autumn 2005)
Outline
Webpage of the course
Homework Assignment : Advanced complexity.
Teacher: Marc Glisse
Teacher: Clément Maria
Teacher: Clément Maria
Cech complex
[K_0 = ∅ \overset{σ_1}{\hookrightarrow} K_1 \overset{σ_2}{\hookrightarrow} K_2 \overset{σ_3}{\hookrightarrow} ⋯ \overset{σ_n}{\hookrightarrow} K_n = \lbrace ...
Teacher: Marc Glisse
Teacher: Clément Maria
Teacher: Clément Maria
Cech complex
[K_0 = ∅ \overset{σ_1}{\hookrightarrow} K_1 \overset{σ_2}{\hookrightarrow} K_2 \overset{σ_3}{\hookrightarrow} ⋯ \overset{σ_n}{\hookrightarrow} K_n = \lbrace ...
Exercise Sheet 4: Covariance and Correlation, Bayes’ theorem, and Linear discriminant analysis
Exercise 1: softmax Gibbs-policy
Exercise Sheet 2: Temporal-Difference learning
Exercise Sheet 3: Signal Detection Theory & Reinforcement Learning
Exercise Sheet 4: Covariance and Correlation, Bayes’ theorem, and Linear discriminant analysis
Exercise Sheet 5: Perceptrons and Hopfield networks
Exercise Sheet 6: Integrate-and-Fire Neuron
Exercise Sheet 5: Perceptrons and Hopfield networks
Exercise Sheet 6: Integrate-and-Fire Neuron
Exercise 1: softmax Gibbs-policy
Exercise Sheet 2: Temporal-Difference learning
Exercise Sheet 5: Perceptrons and Hopfield networks
Exercise Sheet 4: Covariance and Correlation, Bayes’ theorem, and Linear discriminant analysis
Exercise Sheet 6: Integrate-and-Fire Neuron
Exercise Sheet 2: Temporal-Difference learning
Exercise 1: softmax Gibbs-policy
Exercise Sheet 2: Temporal-Difference learning
Exercise Sheet 3: Signal Detection Theory & Reinforcement Learning
Exercise Sheet 4: Covariance and Correlation, Bayes’ theorem, and Linear discriminant analysis
Exercise Sheet 5: Perceptrons and Hopfield networks
Exercise Sheet 6: Integrate-and-Fire Neuron
Stimulus $u_i$ Reward $r_i$ Expected reward: $v_i ≝ w u_i$ Prediction error: $δ_i = r_i - v_i$ Loss: $L_i ≝ δ_i^2$
Exercise 1: softmax Gibbs-policy
Exercise Sheet 2: Temporal-Difference learning
Neurons act as if they were performing reinforcement learning.
Population Coding: how neural activities relate to an animal’s behavior
Exercise Sheet 3: Signal Detection Theory & Reinforcement Learning
Exercise Sheet 4: Covariance and Correlation, Bayes’ theorem, and Linear discriminant analysis
Addiction: affects all parts of the brain
Teacher: Grégory Dumont
Exercise Sheet 5: Perceptrons and Hopfield networks
Teacher: Grégory Dumont
Exercise Sheet 6: Integrate-and-Fire Neuron
Exercise Sheet 4: Covariance and Correlation, Bayes’ theorem, and Linear discriminant analysis
Exercise Sheet 4: Covariance and Correlation, Bayes’ theorem, and Linear discriminant analysis
Exercise 1: softmax Gibbs-policy
Exercise Sheet 2: Temporal-Difference learning
Exercise Sheet 3: Signal Detection Theory & Reinforcement Learning
Exercise Sheet 4: Covariance and Correlation, Bayes’ theorem, and Linear discriminant analysis
Exercise Sheet 5: Perceptrons and Hopfield networks
Exercise Sheet 6: Integrate-and-Fire Neuron
Exercise 1: softmax Gibbs-policy
Exercise Sheet 2: Temporal-Difference learning
Exercise Sheet 3: Signal Detection Theory & Reinforcement Learning
Exercise Sheet 4: Covariance and Correlation, Bayes’ theorem, and Linear discriminant analysis
Exercise Sheet 5: Perceptrons and Hopfield networks
Exercise Sheet 6: Integrate-and-Fire Neuron
Exercise Sheet 6: Integrate-and-Fire Neuron
Stimulus $u_i$ Reward $r_i$ Expected reward: $v_i ≝ w u_i$ Prediction error: $δ_i = r_i - v_i$ Loss: $L_i ≝ δ_i^2$
Neurons act as if they were performing reinforcement learning.
Population Coding: how neural activities relate to an animal’s behavior
Addiction: affects all parts of the brain
Teacher: Grégory Dumont
Teacher: Grégory Dumont
Exercise Sheet 5: Perceptrons and Hopfield networks
Stimulus $u_i$ Reward $r_i$ Expected reward: $v_i ≝ w u_i$ Prediction error: $δ_i = r_i - v_i$ Loss: $L_i ≝ δ_i^2$
Exercise 1: softmax Gibbs-policy
Exercise Sheet 2: Temporal-Difference learning
Neurons act as if they were performing reinforcement learning.
Population Coding: how neural activities relate to an animal’s behavior
Exercise Sheet 3: Signal Detection Theory & Reinforcement Learning
Exercise Sheet 4: Covariance and Correlation, Bayes’ theorem, and Linear discriminant analysis
Addiction: affects all parts of the brain
Teacher: Grégory Dumont
Exercise Sheet 5: Perceptrons and Hopfield networks
Teacher: Grégory Dumont
Exercise Sheet 6: Integrate-and-Fire Neuron
Exercise Sheet 5: Perceptrons and Hopfield networks
Exercise 1: softmax Gibbs-policy
Exercise Sheet 2: Temporal-Difference learning
Exercise Sheet 3: Signal Detection Theory & Reinforcement Learning
Exercise Sheet 3: Signal Detection Theory & Reinforcement Learning
Exercise 1: softmax Gibbs-policy
Exercise Sheet 2: Temporal-Difference learning
Livres de référence:
Trois réglages clefs dans appareil photo:
Projets:
Practical session 1: Canny Edges
Practical session 2: Optical flow
Practical session 4: Neural Networks
Practical session 3: Mean Shift
Practical session: Calibration
Final Summary for the final presentation
Final Summary for the final presentation
Final Summary for the final presentation
Final Summary for the final presentation
Final Summary for the final presentation
Final Summary for the final presentation
Final Summary for the final presentation
Practical session: Calibration
Practical session 1: Canny Edges
Practical session 2: Optical flow
Practical session 3: Mean Shift
Practical session 4: Neural Networks
Final Summary for the final presentation
Practical session: Calibration
Practical session: Calibration
Livres de référence:
Trois réglages clefs dans appareil photo:
Projets:
Practical session 1: Canny Edges
Practical session 2: Optical flow
Practical session 4: Neural Networks
Practical session 3: Mean Shift
Practical session: Calibration
Final Summary for the final presentation
Livres de référence:
Trois réglages clefs dans appareil photo:
Projets:
Practical session 1: Canny Edges
Practical session 2: Optical flow
Practical session 4: Neural Networks
Practical session 3: Mean Shift
Practical session: Calibration
Final Summary for the final presentation
Final Summary for the final presentation
Practical session 1: Canny Edges
Practical session 2: Optical flow
Practical session 4: Neural Networks
Practical session 3: Mean Shift
Practical session: Calibration
Final Summary for the final presentation
Livres de référence:
Trois réglages clefs dans appareil photo:
Projets:
Practical session 1: Canny Edges
Practical session 2: Optical flow
Practical session 4: Neural Networks
Practical session 3: Mean Shift
Practical session: Calibration
Livres de référence:
Trois réglages clefs dans appareil photo:
Projets:
Practical session 4: Neural Networks
Final Summary for the final presentation
Final Summary for the final presentation
Practical session 4: Neural Networks
Final Summary for the final presentation
Practical session 2: Optical flow
Practical session 4: Neural Networks
Practical session 3: Mean Shift
Practical session: Calibration
Practical session 1: Canny Edges
Practical session: Calibration
Final Summary for the final presentation
Final Summary for the final presentation
Final Summary for the final presentation
Recap: every program in our setting is comprised of sequential processes $(P_1, …, P_n)$ that are turned into a control flow graph $(G_1, …, G_n)$
Metric Spaces
Cartesian product
Isothetic regions
Teacher: Emmanuel Haucourt
Teacher: Emmanuel Haucourt
Recap: every program in our setting is comprised of sequential processes $(P_1, …, P_n)$ that are turned into a control flow graph $(G_1, …, G_n)$
Metric Spaces
Cartesian product
Isothetic regions
Teacher: Emmanuel Haucourt
Recap: every program in our setting is comprised of sequential processes $(P_1, …, P_n)$ that are turned into a control flow graph $(G_1, …, G_n)$
Metric Spaces
Cartesian product
Isothetic regions
Recap: every program in our setting is comprised of sequential processes $(P_1, …, P_n)$ that are turned into a control flow graph $(G_1, …, G_n)$
Metric Spaces
Cartesian product
Isothetic regions
Véronique Cortier : équipe “méthodes formelles” au LORIA, à Nancy.
Véronique Cortier : équipe “méthodes formelles” au LORIA, à Nancy.
Page du cours
Page du cours
Algorithme de placement de processus à l’aide de modèles enrichis
Représentation et analyse des phénomènes de coercion en sémantique des cadres
Quantum Computing
SQL query evaluation with correctness guarantees
Implementation of an attack on NTRU assumption
Assistants de preuves Assia Mahboubi
A la recherche du son 3D - François Alouges Question : est-ce qu’on peut imiter l’écoute 3D avec un casque ?
Enseignante: Valérie Péris-Delacroix
Enseignante: Valérie Péris-Delacroix
Algorithme de placement de processus à l’aide de modèles enrichis
Représentation et analyse des phénomènes de coercion en sémantique des cadres
Quantum Computing
SQL query evaluation with correctness guarantees
Implementation of an attack on NTRU assumption
Assistants de preuves Assia Mahboubi
A la recherche du son 3D - François Alouges Question : est-ce qu’on peut imiter l’écoute 3D avec un casque ?
Oskar Skibski :
Algorithme de placement de processus à l’aide de modèles enrichis
Représentation et analyse des phénomènes de coercion en sémantique des cadres
Quantum Computing
SQL query evaluation with correctness guarantees
Implementation of an attack on NTRU assumption
Oskar Skibski :
Assistants de preuves Assia Mahboubi
A la recherche du son 3D - François Alouges Question : est-ce qu’on peut imiter l’écoute 3D avec un casque ?
Véronique Cortier : équipe “méthodes formelles” au LORIA, à Nancy.
Enseignante: Valérie Péris-Delacroix
Oskar Skibski :
Page du cours
Algorithme de placement de processus à l’aide de modèles enrichis
Représentation et analyse des phénomènes de coercion en sémantique des cadres
Quantum Computing
SQL query evaluation with correctness guarantees
Implementation of an attack on NTRU assumption
Assistants de preuves Assia Mahboubi
A la recherche du son 3D - François Alouges Question : est-ce qu’on peut imiter l’écoute 3D avec un casque ?
Page du cours
Algorithme de placement de processus à l’aide de modèles enrichis
Représentation et analyse des phénomènes de coercion en sémantique des cadres
Quantum Computing
SQL query evaluation with correctness guarantees
Implementation of an attack on NTRU assumption
Assistants de preuves Assia Mahboubi
A la recherche du son 3D - François Alouges Question : est-ce qu’on peut imiter l’écoute 3D avec un casque ?
Oskar Skibski :
Enseignante: Valérie Péris-Delacroix
Véronique Cortier : équipe “méthodes formelles” au LORIA, à Nancy.
Véronique Cortier : équipe “méthodes formelles” au LORIA, à Nancy.
Teacher: Pierre-Louis Curien
Full Abstraction
Lecture 16
Lecture 17
Teacher: Thomas Ehrhard
Teacher: Thomas Ehrhard
Teacher: Thomas Ehrhard
Lecture 12
Lecture 13
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Thomas Ehrhard
Teacher: Thomas Ehrhard
Teacher: Pierre-Louis Curien
Teacher: Thomas Ehrhard
Lecture 12
Lecture 13
Full Abstraction
Lecture 16
Lecture 17
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Thomas Ehrhard
Teacher: Thomas Ehrhard
Teacher: Pierre-Louis Curien
Teacher: Thomas Ehrhard
Lecture 12
Lecture 13
Full Abstraction
Lecture 16
Lecture 17
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Thomas Ehrhard
Teacher: Thomas Ehrhard
Teacher: Pierre-Louis Curien
Teacher: Thomas Ehrhard
Lecture 12
Lecture 13
Full Abstraction
Lecture 16
Lecture 17
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Thomas Ehrhard
Teacher: Thomas Ehrhard
Teacher: Pierre-Louis Curien
Teacher: Thomas Ehrhard
Lecture 12
Lecture 13
Full Abstraction
Lecture 16
Lecture 17
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Thomas Ehrhard
Teacher: Thomas Ehrhard
Teacher: Pierre-Louis Curien
Teacher: Thomas Ehrhard
Lecture 12
Lecture 13
Full Abstraction
Lecture 16
Lecture 17
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Thomas Ehrhard
Teacher: Thomas Ehrhard
Teacher: Thomas Ehrhard
Lecture 12
Lecture 13
Full Abstraction
Lecture 16
Lecture 17
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Paul-André Melliès
Teacher: Thomas Ehrhard
Teacher: Thomas Ehrhard
Teacher: Pierre-Louis Curien
Teacher: Thomas Ehrhard
Lecture 12
Lecture 13
Full Abstraction
Lecture 16
Lecture 17
1.
Énoncé
1.
Énoncé
1.
Énoncé
1.
Énoncé
1.
Énoncé
1.
Énoncé
Teacher: Valentin Blot
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Valentin Blot
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Valentin Blot
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Valentin Blot
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Valentin Blot
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Valentin Blot
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Gilles Dowek
Teacher: Valentin Blot
Teacher: François Bobot
Github Repo Report
Functional programming MPRI project (teachers: Yann Régis-Gianas, François Pottier, Pierre-Évariste Dagand and Didier Rémy), about compiling simply typed...
Teacher: François Pottier
Teacher: François Pottier
Teacher: François Pottier
Teacher: François Pottier
Teacher: Didier Remy
Github Repo Report
Functional programming MPRI project (teachers: Yann Régis-Gianas, François Pottier, Pierre-Évariste Dagand and Didier Rémy), about compiling simply typed...
Teacher: François Pottier
Teacher: François Pottier
Teacher: François Pottier
Teacher: François Pottier
Teacher: Didier Remy
Github Repo Report
Functional programming MPRI project (teachers: Yann Régis-Gianas, François Pottier, Pierre-Évariste Dagand and Didier Rémy), about compiling simply typed...
Teacher: François Bobot
Teacher: François Pottier
Teacher: François Pottier
Teacher: François Pottier
Teacher: François Pottier
Teacher: Didier Remy
Github Repo Report
Functional programming MPRI project (teachers: Yann Régis-Gianas, François Pottier, Pierre-Évariste Dagand and Didier Rémy), about compiling simply typed...
Functional programming MPRI project (teachers: Yann Régis-Gianas, François Pottier, Pierre-Évariste Dagand and Didier Rémy), about compiling simply typed...
Github Repo Report
Teacher: François Pottier
Teacher: François Pottier
Teacher: François Pottier
Teacher: François Pottier
Teacher: Didier Remy
Teacher: François Pottier
Teacher: François Pottier
Teacher: François Pottier
Teacher: François Pottier
Teacher: Didier Remy
Functional programming MPRI project (teachers: Yann Régis-Gianas, François Pottier, Pierre-Évariste Dagand and Didier Rémy), about compiling simply typed...
Functional programming MPRI project (teachers: Yann Régis-Gianas, François Pottier, Pierre-Évariste Dagand and Didier Rémy), about compiling simply typed...
Teacher: François Pottier
Teacher: François Pottier
Teacher: François Pottier
Teacher: François Pottier
Teacher: Didier Remy
Functional programming MPRI project (teachers: Yann Régis-Gianas, François Pottier, Pierre-Évariste Dagand and Didier Rémy), about compiling simply typed...
Github Repo Report
Functional programming MPRI project (teachers: Yann Régis-Gianas, François Pottier, Pierre-Évariste Dagand and Didier Rémy), about compiling simply typed...
Teacher: François Bobot
Github Repo Report
Github Repo Report
Github Repo Report
Teachers: Dietmar Berwanger
Teachers: Dietmar Berwanger
Teachers: Wieslaw Zielonka
Teachers: Wieslaw Zielonka
Teachers: Dietmar Berwanger
Teachers: Dietmar Berwanger
Teachers: Wieslaw Zielonka
Teachers: Wieslaw Zielonka
Teachers: Dietmar Berwanger
Teachers: Dietmar Berwanger
Teachers: Wieslaw Zielonka
Teachers: Wieslaw Zielonka
Teachers: Wieslaw Zielonka
Teachers: Wieslaw Zielonka
Teachers: Dietmar Berwanger
Teachers: Dietmar Berwanger
Teachers: Wieslaw Zielonka
Teachers: Wieslaw Zielonka
Teachers: Dietmar Berwanger
Teachers: Dietmar Berwanger
Teachers: Wieslaw Zielonka
Teachers: Wieslaw Zielonka
Teachers: Dietmar Berwanger
Teachers: Dietmar Berwanger
Correspondence between Types and Topological spaces
Recall that
HIT: Inductive types where equality is also taken into account.
Examples of inductive types:
Streams:
[μC. (C ⟶ C)]
We want a notion of category where type is a category, so that there’s a notion of homotopy thanks to model structures.
Category in 2-level type theory
Globular Sets
Correspondence between Types and Topological spaces
Recall that
Examples of inductive types:
Streams:
HIT: Inductive types where equality is also taken into account.
[μC. (C ⟶ C)]
We want a notion of category where type is a category, so that there’s a notion of homotopy thanks to model structures.
Category in 2-level type theory
Globular Sets
Correspondence between Types and Topological spaces
Recall that
Correspondence between Types and Topological spaces
Recall that
HIT: Inductive types where equality is also taken into account.
Correspondence between Types and Topological spaces
Recall that
Examples of inductive types:
Streams:
Examples of inductive types:
Streams:
Correspondence between Types and Topological spaces
Recall that
Examples of inductive types:
Streams:
HIT: Inductive types where equality is also taken into account.
[μC. (C ⟶ C)]
We want a notion of category where type is a category, so that there’s a notion of homotopy thanks to model structures.
Category in 2-level type theory
Globular Sets
Correspondence between Types and Topological spaces
Recall that
Examples of inductive types:
Streams:
HIT: Inductive types where equality is also taken into account.
[μC. (C ⟶ C)]
We want a notion of category where type is a category, so that there’s a notion of homotopy thanks to model structures.
Category in 2-level type theory
Globular Sets
HIT: Inductive types where equality is also taken into account.
[μC. (C ⟶ C)]
We want a notion of category where type is a category, so that there’s a notion of homotopy thanks to model structures.
Category in 2-level type theory
Globular Sets
Correspondence between Types and Topological spaces
Recall that
Examples of inductive types:
Streams:
Examples of inductive types:
Streams:
Correspondence between Types and Topological spaces
Recall that
Examples of inductive types:
Streams:
HIT: Inductive types where equality is also taken into account.
[μC. (C ⟶ C)]
We want a notion of category where type is a category, so that there’s a notion of homotopy thanks to model structures.
Category in 2-level type theory
Globular Sets
Correspondence between Types and Topological spaces
Recall that
Examples of inductive types:
Streams:
HIT: Inductive types where equality is also taken into account.
[μC. (C ⟶ C)]
We want a notion of category where type is a category, so that there’s a notion of homotopy thanks to model structures.
Category in 2-level type theory
Globular Sets
Correspondence between Types and Topological spaces
Recall that
Examples of inductive types:
Streams:
HIT: Inductive types where equality is also taken into account.
[μC. (C ⟶ C)]
We want a notion of category where type is a category, so that there’s a notion of homotopy thanks to model structures.
Category in 2-level type theory
Globular Sets
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Teacher: Benjamin Hennion
Énoncé
Énoncé
Énoncé
Énoncé
Énoncé
Énoncé
DM de $𝜆$-calcul
Énoncé
$\sim$ 1930 : Alonzo Church.
Modèle du $𝜆$-calcul
$𝜆$-calcul simplement typé
DM de $𝜆$-calcul
Énoncé
$\sim$ 1930 : Alonzo Church.
Énoncé
Énoncé
Modèle du $𝜆$-calcul
$𝜆$-calcul simplement typé
Énoncé
Énoncé
Énoncé
DM de $𝜆$-calcul
Énoncé
Énoncé
Énoncé
Énoncé
Énoncé
Énoncé
Énoncé
Énoncé
Énoncé
Énoncé
Énoncé
$\sim$ 1930 : Alonzo Church.
Modèle du $𝜆$-calcul
$𝜆$-calcul simplement typé
$\sim$ 1930 : Alonzo Church.
Modèle du $𝜆$-calcul
$𝜆$-calcul simplement typé
DM de $𝜆$-calcul
$\sim$ 1930 : Alonzo Church.
Énoncé
Énoncé
Modèle du $𝜆$-calcul
$𝜆$-calcul simplement typé
Énoncé
DM de $𝜆$-calcul
Énoncé
Énoncé
$𝜆$-calcul simplement typé
$\sim$ 1930 : Alonzo Church.
Énoncé
Énoncé
Modèle du $𝜆$-calcul
$𝜆$-calcul simplement typé
Énoncé
DM de $𝜆$-calcul
Énoncé
Énoncé
Énoncé
Énoncé
Modèle du $𝜆$-calcul
$𝜆$-calcul simplement typé
DM de $𝜆$-calcul
DM de $𝜆$-calcul
$𝜆$-calcul simplement typé
Automates à double sens
EX 1
Quelques exemples
EX 1
DM : Automates pondérés.
Automates à double sens
Automates à double sens
DM : Deterministic Pushdown Automata
DM : Automates pondérés.
DM : Deterministic Pushdown Automata
Énoncé
Énoncé
Énoncé
Énoncé
Énoncé
Énoncé
TP de Langages Formels
Automates à double sens
Automates à double sens
Énoncé
Énoncé
Énoncé
TP de Langages Formels
DM : Deterministic Pushdown Automata
DM : Deterministic Pushdown Automata
Introduction
Automate minimal
Langages algébriques
On this page
Définition
Partie avant d’un compilateur
Analyse syntaxique ascendante
DM : Deterministic Pushdown Automata
Quelques exemples
EX 1
DM : Automates pondérés.
EX 1. Automates d’arbres
Énoncé
Énoncé
Énoncé
Énoncé
Énoncé
TP de Langages Formels
Quelques exemples
EX 1
EX 1. Automates d’arbres
Énoncé
Quelques exemples
EX 1
EX 1. Automates d’arbres
Énoncé
Énoncé
Énoncé
Énoncé
TP de Langages Formels
EX 1
Partie avant d’un compilateur
Analyse syntaxique ascendante
Partie avant d’un compilateur
Analyse syntaxique ascendante
Analyse syntaxique ascendante
Automate minimal
Automates à double sens
Définition
Partie avant d’un compilateur
Analyse syntaxique ascendante
Automates à double sens
Énoncé
TP de Langages Formels
EX 1. Automates d’arbres
Automates à double sens
Quelques exemples
EX 1
DM : Automates pondérés.
DM : Deterministic Pushdown Automata
Partie avant d’un compilateur
Analyse syntaxique ascendante
DM : Deterministic Pushdown Automata
DM : Deterministic Pushdown Automata
DM : Deterministic Pushdown Automata
Introduction
Automate minimal
Langages algébriques
On this page
Définition
Partie avant d’un compilateur
Analyse syntaxique ascendante
Automates à double sens
Introduction
Automate minimal
Langages algébriques
On this page
Définition
Partie avant d’un compilateur
Analyse syntaxique ascendante
Automates à double sens
Quelques exemples
EX 1
DM : Automates pondérés.
DM : Deterministic Pushdown Automata
Énoncé
Énoncé
Énoncé
TP de Langages Formels
Introduction
Énoncé
Langages algébriques
Énoncé
On this page
Énoncé
Définition
Partie avant d’un compilateur
Analyse syntaxique ascendante
Automates à double sens
Énoncé
TP de Langages Formels
Introduction
Automate minimal
Énoncé
Énoncé
Langages algébriques
Énoncé
On this page
Énoncé
Définition
Partie avant d’un compilateur
Analyse syntaxique ascendante
Automates à double sens
DM : Deterministic Pushdown Automata
Énoncé
TP de Langages Formels
EX 1. Automates d’arbres
EX 1. Automates d’arbres
EX 1. Automates d’arbres
Automates à double sens
EX 1. Automates d’arbres
Automates à double sens
Automates à double sens
Énoncé
DM : Deterministic Pushdown Automata
DM : Deterministic Pushdown Automata
Énoncé
TP de Langages Formels
DM : Deterministic Pushdown Automata
Automates à double sens
DM : Deterministic Pushdown Automata
Teacher: Beniamino Accatoli
Reminder:
Important concepts in rewriting theory: when redexes are created
Exercise 1
Teacher: Delia Kesner
Teacher: Delia Kesner
Teacher: Delia Kesner
Teacher: Delia Kesner
Teacher: Michele Pagani
Teacher: Michele Pagani
Teacher: Delia Kesner
Teacher: Michele Pagani
Teacher: Michele Pagani
Teacher: Michele Pagani
Teacher: Delia Kesner
Teacher: Delia Kesner
Teacher: Delia Kesner
Teacher: Delia Kesner
Teacher: Beniamino Accatoli
Reminder:
Important concepts in rewriting theory: when redexes are created
Exercise 1
Teacher: Dave Miller, INRIA
Abstract Logic Programming: Proof theory formulations (corresponds to chapter 5 in Dave Miller’s lecture notes)
[⊢_O = ⊢_I = ⊢_C \qquad hC ⊆ hH \qquad ⊢_O = ⊢_I]
Teacher: Michele Pagani
Teacher: Michele Pagani
Teacher: Delia Kesner
Teacher: Michele Pagani
Teacher: Michele Pagani
Teacher: Michele Pagani
Teacher: Delia Kesner
Teacher: Delia Kesner
Teacher: Delia Kesner
Teacher: Delia Kesner
Teacher: Beniamino Accatoli
Reminder:
Important concepts in rewriting theory: when redexes are created
Exercise 1
Teacher: Dave Miller, INRIA
Abstract Logic Programming: Proof theory formulations (corresponds to chapter 5 in Dave Miller’s lecture notes)
[⊢_O = ⊢_I = ⊢_C \qquad hC ⊆ hH \qquad ⊢_O = ⊢_I]
Teacher: Dave Miller, INRIA
Abstract Logic Programming: Proof theory formulations (corresponds to chapter 5 in Dave Miller’s lecture notes)
[⊢_O = ⊢_I = ⊢_C \qquad hC ⊆ hH \qquad ⊢_O = ⊢_I]
Teacher: Michele Pagani
Teacher: Michele Pagani
Teacher: Delia Kesner
Teacher: Michele Pagani
Teacher: Michele Pagani
Teacher: Michele Pagani
Teacher: Beniamino Accatoli
Reminder:
Important concepts in rewriting theory: when redexes are created
Exercise 1
Teacher: Beniamino Accatoli
Reminder:
Important concepts in rewriting theory: when redexes are created
Teacher: Dave Miller, INRIA
Abstract Logic Programming: Proof theory formulations (corresponds to chapter 5 in Dave Miller’s lecture notes)
[⊢_O = ⊢_I = ⊢_C \qquad hC ⊆ hH \qquad ⊢_O = ⊢_I]
Teacher: Michele Pagani
Teacher: Michele Pagani
Teacher: Delia Kesner
Teacher: Michele Pagani
Teacher: Michele Pagani
Teacher: Michele Pagani
Teacher: Delia Kesner
Teacher: Delia Kesner
Teacher: Delia Kesner
Teacher: Delia Kesner
Teacher: Beniamino Accatoli
Reminder:
Important concepts in rewriting theory: when redexes are created
Exercise 1
Teacher: Dave Miller, INRIA
Abstract Logic Programming: Proof theory formulations (corresponds to chapter 5 in Dave Miller’s lecture notes)
[⊢_O = ⊢_I = ⊢_C \qquad hC ⊆ hH \qquad ⊢_O = ⊢_I]
Teacher: Michele Pagani
Teacher: Michele Pagani
Teacher: Delia Kesner
Teacher: Michele Pagani
Teacher: Michele Pagani
Teacher: Michele Pagani
Teacher: Delia Kesner
Teacher: Delia Kesner
Teacher: Delia Kesner
Teacher: Delia Kesner
Teacher: Beniamino Accatoli
Reminder:
Important concepts in rewriting theory: when redexes are created
Exercise 1
Teacher: Dave Miller, INRIA
Abstract Logic Programming: Proof theory formulations (corresponds to chapter 5 in Dave Miller’s lecture notes)
[⊢_O = ⊢_I = ⊢_C \qquad hC ⊆ hH \qquad ⊢_O = ⊢_I]
Teacher: Michele Pagani
Teacher: Michele Pagani
Teacher: Delia Kesner
Teacher: Michele Pagani
Teacher: Michele Pagani
Teacher: Michele Pagani
Teacher: Delia Kesner
Teacher: Delia Kesner
Teacher: Delia Kesner
Teacher: Delia Kesner
Teacher: Beniamino Accatoli
Reminder:
Important concepts in rewriting theory: when redexes are created
Exercise 1
Teacher: Dave Miller, INRIA
Abstract Logic Programming: Proof theory formulations (corresponds to chapter 5 in Dave Miller’s lecture notes)
[⊢_O = ⊢_I = ⊢_C \qquad hC ⊆ hH \qquad ⊢_O = ⊢_I]
Introduction
Déduction naturelle : Pas utilisée en pratique
Calcul des séquents
Theories
Introduction
Théories indécidables
Naive and DPLL algorithms
DM : QBF et la logique intuitionniste
Énoncé
Énoncé
Théories & Gödel
EX 1
EX 1. Théories cohérentes
EX 1
Théories & Gödel
Calcul des séquents
Énoncé
DM : QBF et la logique intuitionniste
Naive and DPLL algorithms
EX 1. Théories cohérentes
DM : QBF et la logique intuitionniste
Programmation logique
Naive and DPLL algorithms
DM : QBF et la logique intuitionniste
DM : QBF et la logique intuitionniste
Naive and DPLL algorithms
Naive and DPLL algorithms
Naive and DPLL algorithms
DM : QBF et la logique intuitionniste
Naive and DPLL algorithms
Naive and DPLL algorithms
Énoncé
Énoncé
EX 1
Théories & Gödel
EX 1. Théories cohérentes
Énoncé
Théories & Gödel
EX 1. Théories cohérentes
Énoncé
EX 1
Naive and DPLL algorithms
Théories & Gödel
EX 1
DM : QBF et la logique intuitionniste
Théories & Gödel
EX 1. Théories cohérentes
Introduction
Déduction naturelle : Pas utilisée en pratique
Calcul des séquents
Theories
Programmation logique
Introduction
Théories indécidables
Introduction
Calcul des séquents
Déduction naturelle : Pas utilisée en pratique
Theories
Programmation logique
Introduction
Théories indécidables
Déduction naturelle : Pas utilisée en pratique
Énoncé
EX 1
Théories & Gödel
EX 1. Théories cohérentes
Introduction
Énoncé
Naive and DPLL algorithms
Introduction
Déduction naturelle : Pas utilisée en pratique
Calcul des séquents
Énoncé
Énoncé
Theories
DM : QBF et la logique intuitionniste
Programmation logique
Introduction
Théories indécidables
EX 1
Théories & Gödel
EX 1. Théories cohérentes
Énoncé
EX 1
Théories & Gödel
EX 1. Théories cohérentes
Theories
Programmation logique
Introduction
Théories indécidables
Calcul des séquents
Énoncé
DM : QBF et la logique intuitionniste
Théories & Gödel
Calcul des séquents
EX 1
Théories & Gödel
EX 1. Théories cohérentes
Introduction
Théories indécidables
Théories & Gödel
EX 1. Théories cohérentes
Théories indécidables
EX 1
Théories & Gödel
Lecturer: Pantelis Leptourgos
Lecturer: Lyudmila Kushnir
Problem 1: Gaussian Neuronal Noise
Lecturer: Mirjana Maras
Lecturer: Mirjana Maras
Lecturer: Lyudmila Kushnir
Problem 1
Lecturer: Pantelis Leptourgos
Lecturer: Sophie Denève
Lecturer: Lyudmila Kushnir
Lecturer: Sophie Denève
Lecturer: Lyudmila Kushnir
Lecturer: Pantelis Leptourgos
Lecturer: Sophie Denève
Lecturer: Sophie Denève
Lecturer: Pantelis Leptourgos
Lecturer: Sophie Denève
Final Project: Coherent Patterns of Activity from Chaotic Neural Networks.
Final Project: Coherent Patterns of Activity from Chaotic Neural Networks.
Lecturer: Lyudmila Kushnir
Lecturer: Mirjana Maras
Lecturer: Lyudmila Kushnir
Problem 1
Final Project: Coherent Patterns of Activity from Chaotic Neural Networks.
Lecturer: Pantelis Leptourgos
Lecturer: Pantelis Leptourgos
Lecturer: Pantelis Leptourgos
Lecturer: Lyudmila Kushnir
Problem 1: Gaussian Neuronal Noise
Lecturer: Mirjana Maras
Lecturer: Mirjana Maras
Lecturer: Lyudmila Kushnir
Problem 1
Lecturer: Pantelis Leptourgos
Lecturer: Sophie Denève
Lecturer: Lyudmila Kushnir
Lecturer: Sophie Denève
Lecturer: Lyudmila Kushnir
Lecturer: Pantelis Leptourgos
Lecturer: Lyudmila Kushnir
Problem 1: Gaussian Neuronal Noise
Lecturer: Mirjana Maras
Lecturer: Mirjana Maras
Lecturer: Lyudmila Kushnir
Problem 1
Lecturer: Pantelis Leptourgos
Lecturer: Sophie Denève
Lecturer: Lyudmila Kushnir
Lecturer: Sophie Denève
Lecturer: Lyudmila Kushnir
Lecturer: Mirjana Maras
Final Project: Coherent Patterns of Activity from Chaotic Neural Networks.
Lecturer: Lyudmila Kushnir
Final Project: Coherent Patterns of Activity from Chaotic Neural Networks.
Final Project: Coherent Patterns of Activity from Chaotic Neural Networks.
Lecturer: Pantelis Leptourgos
Lecturer: Lyudmila Kushnir
Lecturer: Mirjana Maras
Lecturer: Mirjana Maras
Lecturer: Lyudmila Kushnir
Problem 1
Lecturer: Pantelis Leptourgos
Lecturer: Sophie Denève
Lecturer: Lyudmila Kushnir
Lecturer: Sophie Denève
Lecturer: Lyudmila Kushnir
Final Project: Coherent Patterns of Activity from Chaotic Neural Networks.
Problem 1: Gaussian Neuronal Noise
Final Project: Coherent Patterns of Activity from Chaotic Neural Networks.
Lecturer: Pantelis Leptourgos
Lecturer: Sophie Denève
Lecturer: Pantelis Leptourgos
Lecturer: Sophie Denève
Final Project: Coherent Patterns of Activity from Chaotic Neural Networks.
Lecturer: Pantelis Leptourgos
Lecturer: Lyudmila Kushnir
Problem 1: Gaussian Neuronal Noise
Lecturer: Mirjana Maras
Lecturer: Mirjana Maras
Lecturer: Lyudmila Kushnir
Problem 1
Lecturer: Pantelis Leptourgos
Lecturer: Sophie Denève
Lecturer: Lyudmila Kushnir
Lecturer: Sophie Denève
Lecturer: Lyudmila Kushnir
Final Project: Coherent Patterns of Activity from Chaotic Neural Networks.
Lecturer: Pantelis Leptourgos
Lecturer: Lyudmila Kushnir
Lecturer: Mirjana Maras
Lecturer: Mirjana Maras
Lecturer: Pantelis Leptourgos
Lecturer: Sophie Denève
Lecturer: Lyudmila Kushnir
Lecturer: Sophie Denève
Lecturer: Lyudmila Kushnir
Lecturer: Pantelis Leptourgos
Lecturer: Lyudmila Kushnir
Problem 1: Gaussian Neuronal Noise
Lecturer: Mirjana Maras
Lecturer: Mirjana Maras
Lecturer: Lyudmila Kushnir
Problem 1
Lecturer: Pantelis Leptourgos
Lecturer: Sophie Denève
Lecturer: Lyudmila Kushnir
Lecturer: Sophie Denève
Lecturer: Lyudmila Kushnir
Final Project: Coherent Patterns of Activity from Chaotic Neural Networks.
Final Project: Coherent Patterns of Activity from Chaotic Neural Networks.
Problem 1: Gaussian Neuronal Noise
Final Project: Coherent Patterns of Activity from Chaotic Neural Networks.
Lecturer: Lyudmila Kushnir
Problem 1
Lecturer: Sophie Denève
Problem 1: Gaussian Neuronal Noise
Maths Discrètes : DM1
Maths Discrètes : DM1
Maths Discrètes : DM 2
Maths Discrètes : DM 3
Maths Discrètes : DM1
Maths Discrètes : DM 2
Maths Discrètes : DM 3
Maths Discrètes : DM1
Prof : Claudine Picaronny picaro@lsv.ens-cachan.fr
Chapitre 2 : Relations
Chargé de TDs : Anthony Lick
Chaînes de Markov :
I. Différents types de convergence
Maths Discrètes : DM 3
Introduction
Prof : Claudine Picaronny picaro@lsv.ens-cachan.fr
Chapitre 2 : Relations
Chapitre 3 : Structures algébriques
Anneaux
Maths Discrètes : DM1
Version PDF
Introduction
Chaînes de Markov :
I. Différents types de convergence
Maths Discrètes : DM 2
Maths Discrètes : DM 3
Statistiques : Aperçu
Version PDF
Prof : Claudine Picaronny picaro@lsv.ens-cachan.fr
Chargé de TDs : Anthony Lick
Chargé de TDs : Anthony Lick
Chargé de TDs : Anthony Lick
Chapitre 3 : Structures algébriques
Anneaux
Anneaux
Maths Discrètes : DM 2
Maths Discrètes : DM1
Maths Discrètes : DM 2
Prof : Claudine Picaronny picaro@lsv.ens-cachan.fr
Chargé de TDs : Anthony Lick
Chapitre 3 : Structures algébriques
Maths Discrètes : DM1
Chaînes de Markov :
I. Différents types de convergence
Maths Discrètes : DM 3
Prof : Claudine Picaronny picaro@lsv.ens-cachan.fr
Chapitre 2 : Relations
Chapitre 3 : Structures algébriques
Anneaux
Maths Discrètes : DM1
Version PDF
Introduction
Chaînes de Markov :
I. Différents types de convergence
Maths Discrètes : DM 2
Maths Discrètes : DM 3
Statistiques : Aperçu
Version PDF
Prof : Claudine Picaronny picaro@lsv.ens-cachan.fr
Version PDF
Chapitre 2 : Relations
Version PDF
Chapitre 3 : Structures algébriques
Version PDF
Version PDF
Anneaux
Version PDF
Introduction
Version PDF
Chaînes de Markov :
Version PDF
I. Différents types de convergence
Version PDF
Statistiques : Aperçu
Prof : Claudine Picaronny picaro@lsv.ens-cachan.fr
Chargé de TDs : Anthony Lick
Prof : Claudine Picaronny picaro@lsv.ens-cachan.fr
Chargé de TDs : Anthony Lick
Version PDF
Version PDF
Chapitre 3 : Structures algébriques
Chapitre 2 : Relations
Prof : Claudine Picaronny picaro@lsv.ens-cachan.fr
Chargé de TDs : Anthony Lick
Chapitre 2 : Relations
Chapitre 3 : Structures algébriques
Anneaux
Maths Discrètes : DM1
Version PDF
Introduction
Chaînes de Markov :
I. Différents types de convergence
Maths Discrètes : DM 2
Maths Discrètes : DM 3
Statistiques : Aperçu
Version PDF
Prof : Claudine Picaronny picaro@lsv.ens-cachan.fr
Chargé de TDs : Anthony Lick
Chapitre 2 : Relations
Chapitre 3 : Structures algébriques
Anneaux
Maths Discrètes : DM1
Version PDF
Maths Discrètes : DM 2
Version PDF
Chapitre 3 : Structures algébriques
Chapitre 3 : Structures algébriques
Maths Discrètes : DM1
Maths Discrètes : DM 2
Introduction
Chaînes de Markov :
I. Différents types de convergence
Maths Discrètes : DM 2
Maths Discrètes : DM 3
Statistiques : Aperçu
Introduction
Chaînes de Markov :
I. Différents types de convergence
Maths Discrètes : DM 3
Statistiques : Aperçu
Maths Discrètes : DM 2
Chapitre 2 : Relations
Chapitre 2 : Relations
Chapitre 2 : Relations
Maths Discrètes : DM1
Version PDF
Version PDF
Statistiques : Aperçu
Chapitre 3 : Structures algébriques
Maths Discrètes : DM 2
Chapitre 2 : Relations
Prof : Claudine Picaronny picaro@lsv.ens-cachan.fr
Chargé de TDs : Anthony Lick
Adjonction: représentations $𝕂$-linéaires sur $M$ / $𝕂[G]$-modules sur $M$
EX 1.2.4
Extension/restriction des scalaires
EX 1.2.10
DM: Groupes finis.
EX 3.2.5.
DM: Groupes finis.
Adjonction: représentations $𝕂$-linéaires sur $M$ / $𝕂[G]$-modules sur $M$
EX 1.2.4
Extension/restriction des scalaires
EX 1.2.10
DM: Groupes finis.
EX 3.2.5.
Adjonction: représentations $𝕂$-linéaires sur $M$ / $𝕂[G]$-modules sur $M$
EX 1.2.4
Extension/restriction des scalaires
EX 1.2.10
EX 3.2.5.
EX 1.2.4
DM: Groupes finis.
DM: Groupes finis.
Adjonction: représentations $𝕂$-linéaires sur $M$ / $𝕂[G]$-modules sur $M$
EX 1.2.4
Extension/restriction des scalaires
EX 1.2.10
DM: Groupes finis.
EX 3.2.5.
Adjonction: représentations $𝕂$-linéaires sur $M$ / $𝕂[G]$-modules sur $M$
EX 1.2.4
Extension/restriction des scalaires
EX 1.2.10
Adjonction: représentations $𝕂$-linéaires sur $M$ / $𝕂[G]$-modules sur $M$
Extension/restriction des scalaires
Adjonction: représentations $𝕂$-linéaires sur $M$ / $𝕂[G]$-modules sur $M$
EX 1.2.4
Extension/restriction des scalaires
EX 1.2.10
EX 3.2.5.
DM: Groupes finis.
Lab 4: Intent Recognition Younesse Kaddar, Alexandre Olech and Kexin Ren (Lecturer: Mohamed Chetouani)
Tutorial 2: Navigation Strategies
David Filliat
Teacher: Anfelo Arleo
Teacher: Benoît Girard
Teacher: Bessière Pierre
Teacher: Philippe Gaussier
Tutorial 2: Navigation Strategies
Teacher: Emmanuel Guigon (ISIR, Sorbonne Université)
Teacher: Stéphane Doncieux, Nicolas Bredèche
La robotique peut aider les neurosciences :
Documentation Slides iPython notebook
Tutorial 3: Regression
Tutorial 2: Navigation Strategies
Lab 4: Intent Recognition Younesse Kaddar, Alexandre Olech and Kexin Ren (Lecturer: Mohamed Chetouani)
La robotique peut aider les neurosciences :
David Filliat
Teacher: Anfelo Arleo
Teacher: Benoît Girard
Teacher: Bessière Pierre
Teacher: Philippe Gaussier
Teacher: Emmanuel Guigon (ISIR, Sorbonne Université)
Teacher: Stéphane Doncieux, Nicolas Bredèche
Tutorial 1: Reinforcement Learning
Tutorial 2: Navigation Strategies
Tutorial 3: Regression
Documentation Slides iPython notebook
Lab 4: Intent Recognition Younesse Kaddar, Alexandre Olech and Kexin Ren (Lecturer: Mohamed Chetouani)
Lab 4: Intent Recognition Younesse Kaddar, Alexandre Olech and Kexin Ren (Lecturer: Mohamed Chetouani)
Lab 4: Intent Recognition Younesse Kaddar, Alexandre Olech and Kexin Ren (Lecturer: Mohamed Chetouani)
Lab 4: Intent Recognition Younesse Kaddar, Alexandre Olech and Kexin Ren (Lecturer: Mohamed Chetouani)
Tutorial 1: Reinforcement Learning
Tutorial 2: Navigation Strategies
Tutorial 3: Regression
Lab 4: Intent Recognition Younesse Kaddar, Alexandre Olech and Kexin Ren (Lecturer: Mohamed Chetouani)
La robotique peut aider les neurosciences :
David Filliat
Teacher: Anfelo Arleo
Teacher: Benoît Girard
Teacher: Bessière Pierre
Teacher: Philippe Gaussier
Teacher: Emmanuel Guigon (ISIR, Sorbonne Université)
Teacher: Stéphane Doncieux, Nicolas Bredèche
Teacher: Emmanuel Guigon (ISIR, Sorbonne Université)
Teacher: Stéphane Doncieux, Nicolas Bredèche
Tutorial 2: Navigation Strategies
La robotique peut aider les neurosciences :
David Filliat
Tutorial 1: Reinforcement Learning
Teacher: Anfelo Arleo
Teacher: Benoît Girard
Teacher: Bessière Pierre
Tutorial 2: Navigation Strategies
Tutorial 3: Regression
Teacher: Philippe Gaussier
Teacher: Emmanuel Guigon (ISIR, Sorbonne Université)
Teacher: Stéphane Doncieux, Nicolas Bredèche
Documentation Slides iPython notebook
La robotique peut aider les neurosciences :
David Filliat
Tutorial 1: Reinforcement Learning
Teacher: Anfelo Arleo
Teacher: Benoît Girard
Teacher: Bessière Pierre
Tutorial 2: Navigation Strategies
Tutorial 3: Regression
Teacher: Philippe Gaussier
Teacher: Emmanuel Guigon (ISIR, Sorbonne Université)
Teacher: Stéphane Doncieux, Nicolas Bredèche
Documentation Slides iPython notebook
La robotique peut aider les neurosciences :
David Filliat
Tutorial 1: Reinforcement Learning
Teacher: Anfelo Arleo
Teacher: Benoît Girard
Teacher: Bessière Pierre
Tutorial 2: Navigation Strategies
Tutorial 3: Regression
Teacher: Philippe Gaussier
Teacher: Emmanuel Guigon (ISIR, Sorbonne Université)
Teacher: Stéphane Doncieux, Nicolas Bredèche
Documentation Slides iPython notebook
Tutorial 1: Reinforcement Learning
Documentation Slides iPython notebook
Tutorial 3: Regression
Tutorial 1: Reinforcement Learning
Tutorial 2: Navigation Strategies
La robotique peut aider les neurosciences :
David Filliat
Tutorial 1: Reinforcement Learning
Teacher: Anfelo Arleo
Teacher: Benoît Girard
Teacher: Bessière Pierre
Tutorial 2: Navigation Strategies
Tutorial 3: Regression
Teacher: Philippe Gaussier
Teacher: Emmanuel Guigon (ISIR, Sorbonne Université)
Teacher: Stéphane Doncieux, Nicolas Bredèche
Documentation Slides iPython notebook
La robotique peut aider les neurosciences :
David Filliat
Teacher: Anfelo Arleo
Teacher: Benoît Girard
Teacher: Bessière Pierre
Teacher: Philippe Gaussier
Teacher: Emmanuel Guigon (ISIR, Sorbonne Université)
Teacher: Stéphane Doncieux, Nicolas Bredèche
Tutorial 3: Regression
Lab 4: Intent Recognition Younesse Kaddar, Alexandre Olech and Kexin Ren (Lecturer: Mohamed Chetouani)
Tutorial 1: Reinforcement Learning
Tutorial 2: Navigation Strategies
Tutorial 3: Regression
Documentation Slides iPython notebook
Lab 4: Intent Recognition Younesse Kaddar, Alexandre Olech and Kexin Ren (Lecturer: Mohamed Chetouani)
Introduction : qu’est-ce que c’est que penser ?
Neurosciences: introduction
Moelle spinale
Coupes coronales sériées
Introduction : qu’est-ce que c’est que penser ?
Neurosciences: introduction
Moelle spinale
Coupes coronales sériées
Neurosciences: introduction
Moelle spinale
Coupes coronales sériées
Neurosciences: introduction
Moelle spinale
Coupes coronales sériées
Introduction : qu’est-ce que c’est que penser ?
Neurosciences: introduction
Moelle spinale
Coupes coronales sériées
Introduction : qu’est-ce que c’est que penser ?
Neurosciences: introduction
Moelle spinale
Coupes coronales sériées
Introductive tutorial
Problem Set 2: Quantitative models of behavior.
Problem 1: The Rescola-Wagner Rule
Problem 2: Decision strategy for flower sampling by bees.
Problem 3: The drift diffusion model of decision-making.
Problem 4: Reinforcement learning in a maze.
Problem 1: Poisson spike trains.
Problem 1: Poisson spike trains.
Problem 2: Analysis of spike train.
Problem 3: Integrate-and-Fire neuron.
Problem 4: the Hodgkin-Huxley model.
Problem Set 4: Networks.
Problem 1: Neuron with Autapse.
Problem 2: Circuit with mutual inhibition.
Problem 3: Hopfield model.
Manuel Beiran: manuel.beiran-at-ens.fr
Classical conditioning
Computational model of behavior:
Reminder: differential equations we’ll encounter
A Cell ⟺ An RC circuit
Cell membrane = semi-permeable
Final Project: Coherent Patterns of Activity from Chaotic Neural Networks.
Final Project: Coherent Patterns of Activity from Chaotic Neural Networks.
Problem 4: the Hodgkin-Huxley model.
Cell membrane = semi-permeable
Problem Set 4: Networks.
Problem 3: Hopfield model.
Problem Set 4: Networks.
Problem 3: Hopfield model.
Problem 3: Integrate-and-Fire neuron.
A Cell ⟺ An RC circuit
Problem 1: Poisson spike trains.
Problem 1: Poisson spike trains.
Problem 2: Analysis of spike train.
Problem Set 2: Quantitative models of behavior.
Problem 1: The Rescola-Wagner Rule
Final Project: Coherent Patterns of Activity from Chaotic Neural Networks.
Problem 4: Reinforcement learning in a maze.
Problem Set 4: Networks.
Problem 1: Neuron with Autapse.
Final Project: Coherent Patterns of Activity from Chaotic Neural Networks.
Final Project: Coherent Patterns of Activity from Chaotic Neural Networks.
Problem Set 4: Networks.
Problem 2: Circuit with mutual inhibition.
Manuel Beiran: manuel.beiran-at-ens.fr
Classical conditioning
Computational model of behavior:
Reminder: differential equations we’ll encounter
A Cell ⟺ An RC circuit
Cell membrane = semi-permeable
Problem Set 2: Quantitative models of behavior.
Problem 3: The drift diffusion model of decision-making.
Problem Set 2: Quantitative models of behavior.
Problem 1: The Rescola-Wagner Rule
Problem Set 2: Quantitative models of behavior.
Problem 3: The drift diffusion model of decision-making.
Problem Set 4: Networks.
Problem 1: Neuron with Autapse.
Problem 2: Circuit with mutual inhibition.
Problem 3: Hopfield model.
Introductive tutorial
Problem Set 2: Quantitative models of behavior.
Problem 1: The Rescola-Wagner Rule
Problem 2: Decision strategy for flower sampling by bees.
Problem 3: The drift diffusion model of decision-making.
Problem 4: Reinforcement learning in a maze.
Problem 1: Poisson spike trains.
Problem 1: Poisson spike trains.
Problem 2: Analysis of spike train.
Problem 3: Integrate-and-Fire neuron.
Problem 4: the Hodgkin-Huxley model.
Problem Set 4: Networks.
Problem 1: Neuron with Autapse.
Problem 2: Circuit with mutual inhibition.
Problem 3: Hopfield model.
Final Project: Coherent Patterns of Activity from Chaotic Neural Networks.
Problem Set 4: Networks.
Problem 2: Circuit with mutual inhibition.
Problem 3: Integrate-and-Fire neuron.
A Cell ⟺ An RC circuit
Introductive tutorial
Problem Set 2: Quantitative models of behavior.
Problem 1: The Rescola-Wagner Rule
Problem 2: Decision strategy for flower sampling by bees.
Problem 3: The drift diffusion model of decision-making.
Problem 4: Reinforcement learning in a maze.
Problem Set 2: Quantitative models of behavior.
Problem 1: The Rescola-Wagner Rule
Problem 2: Decision strategy for flower sampling by bees.
Problem 3: The drift diffusion model of decision-making.
Problem 4: Reinforcement learning in a maze.
Problem 1: Poisson spike trains.
Problem 1: Poisson spike trains.
Problem 2: Analysis of spike train.
Problem 3: Integrate-and-Fire neuron.
Problem 4: the Hodgkin-Huxley model.
Problem Set 4: Networks.
Problem 1: Neuron with Autapse.
Problem 2: Circuit with mutual inhibition.
Problem 3: Hopfield model.
Final Project: Coherent Patterns of Activity from Chaotic Neural Networks.
Manuel Beiran: manuel.beiran-at-ens.fr
Classical conditioning
Computational model of behavior:
Reminder: differential equations we’ll encounter
A Cell ⟺ An RC circuit
Cell membrane = semi-permeable
Cell membrane = semi-permeable
Manuel Beiran: manuel.beiran-at-ens.fr
Classical conditioning
Computational model of behavior:
Reminder: differential equations we’ll encounter
A Cell ⟺ An RC circuit
Problem Set 4: Networks.
Problem 2: Circuit with mutual inhibition.
Problem Set 4: Networks.
Problem 1: Neuron with Autapse.
Problem 2: Circuit with mutual inhibition.
Problem 3: Hopfield model.
Final Project: Coherent Patterns of Activity from Chaotic Neural Networks.
Cell membrane = semi-permeable
Manuel Beiran: manuel.beiran-at-ens.fr
Classical conditioning
Computational model of behavior:
Reminder: differential equations we’ll encounter
A Cell ⟺ An RC circuit
Introductive tutorial
Problem Set 2: Quantitative models of behavior.
Problem 1: The Rescola-Wagner Rule
Problem 2: Decision strategy for flower sampling by bees.
Problem 3: The drift diffusion model of decision-making.
Problem 4: Reinforcement learning in a maze.
Problem 1: Poisson spike trains.
Problem 1: Poisson spike trains.
Problem 2: Analysis of spike train.
Problem 3: Integrate-and-Fire neuron.
Problem 4: the Hodgkin-Huxley model.
Problem Set 4: Networks.
Problem 1: Neuron with Autapse.
Problem 2: Circuit with mutual inhibition.
Problem 3: Hopfield model.
Final Project: Coherent Patterns of Activity from Chaotic Neural Networks.
Problem Set 4: Networks.
Problem 1: Neuron with Autapse.
Introductive tutorial
Problem Set 2: Quantitative models of behavior.
Problem 1: The Rescola-Wagner Rule
Problem 2: Decision strategy for flower sampling by bees.
Problem 3: The drift diffusion model of decision-making.
Problem 4: Reinforcement learning in a maze.
Problem 1: Poisson spike trains.
Problem 1: Poisson spike trains.
Problem 2: Analysis of spike train.
Problem 3: Integrate-and-Fire neuron.
Problem 4: the Hodgkin-Huxley model.
Problem Set 4: Networks.
Problem 1: Neuron with Autapse.
Problem 2: Circuit with mutual inhibition.
Problem 3: Hopfield model.
Manuel Beiran: manuel.beiran-at-ens.fr
Classical conditioning
Computational model of behavior:
Reminder: differential equations we’ll encounter
A Cell ⟺ An RC circuit
Cell membrane = semi-permeable
Final Project: Coherent Patterns of Activity from Chaotic Neural Networks.
Introductive tutorial
Problem Set 2: Quantitative models of behavior.
Problem 1: The Rescola-Wagner Rule
Problem 2: Decision strategy for flower sampling by bees.
Problem 3: The drift diffusion model of decision-making.
Problem 4: Reinforcement learning in a maze.
Problem 1: Poisson spike trains.
Problem 1: Poisson spike trains.
Problem 2: Analysis of spike train.
Problem 3: Integrate-and-Fire neuron.
Problem 4: the Hodgkin-Huxley model.
Problem Set 4: Networks.
Problem 1: Neuron with Autapse.
Problem 2: Circuit with mutual inhibition.
Problem 3: Hopfield model.
Final Project: Coherent Patterns of Activity from Chaotic Neural Networks.
Final Project: Coherent Patterns of Activity from Chaotic Neural Networks.
Final Project: Coherent Patterns of Activity from Chaotic Neural Networks.
Problem Set 2: Quantitative models of behavior.
Problem 2: Decision strategy for flower sampling by bees.
Problem 4: Reinforcement learning in a maze.
Problem 2: Decision strategy for flower sampling by bees.
Problem 1: Poisson spike trains.
Problem 1: Poisson spike trains.
Problem 2: Analysis of spike train.
Problem 1: The Rescola-Wagner Rule
Introductive tutorial
Problem Set 2: Quantitative models of behavior.
Problem 1: The Rescola-Wagner Rule
Problem 2: Decision strategy for flower sampling by bees.
Problem 3: The drift diffusion model of decision-making.
Problem 4: Reinforcement learning in a maze.
Problem 1: Poisson spike trains.
Problem 1: Poisson spike trains.
Problem 2: Analysis of spike train.
Problem 3: Integrate-and-Fire neuron.
Problem 4: the Hodgkin-Huxley model.
Problem Set 4: Networks.
Problem 1: Neuron with Autapse.
Problem 2: Circuit with mutual inhibition.
Problem 3: Hopfield model.
Détermination du nombre d’Avogadro
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
Détermination du nombre d’Avogadro
Détermination du nombre d’Avogadro
MathJax + Version PDF
MathJax + Version PDF
Détermination du nombre d’Avogadro
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
Version PDF
MathJax + Version PDF
MathJax + Version PDF
Version PDF
MathJax + Version PDF
MathJax + Version PDF
Détermination du nombre d’Avogadro
Détermination du nombre d’Avogadro
Détermination du nombre d’Avogadro
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
Version PDF
MathJax + Version PDF
Version PDF
MathJax + Version PDF
Version PDF
MathJax + Version PDF
MathJax + Version PDF
Version PDF
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
Version PDF
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
Détermination du nombre d’Avogadro
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
Détermination du nombre d’Avogadro
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
Version PDF
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
MathJax + Version PDF
Coherence of Heyting’s arithmetic in Coq
Coherence of Heyting’s arithmetic in Coq
Dependent Types
Symmetry in HOL
Coherence of Heyting’s arithmetic in Coq
Isabelle (named by Lawrence Paulson after the daughter of Gérard Huet, as a tribute): a popular generic theorem prover
Symmetry in HOL
Isabelle (named by Lawrence Paulson after the daughter of Gérard Huet, as a tribute): a popular generic theorem prover
NB: Boards are finite. Number of configurations:
Coherence of Heyting’s arithmetic in Coq
Page du cours
TD9 : Définitions inductives de prédicats et analyse par cas
NB: Boards are finite. Number of configurations:
Coherence of Heyting’s arithmetic in Coq
Coherence of Heyting’s arithmetic in Coq
Dependent Types
Symmetry in HOL
Isabelle (named by Lawrence Paulson after the daughter of Gérard Huet, as a tribute): a popular generic theorem prover
Dependent Types
Page du cours
Symmetry in HOL
TD9 : Définitions inductives de prédicats et analyse par cas
Isabelle (named by Lawrence Paulson after the daughter of Gérard Huet, as a tribute): a popular generic theorem prover
NB: Boards are finite. Number of configurations:
Dependent Types
Dependent Types
Symmetry in HOL
Isabelle (named by Lawrence Paulson after the daughter of Gérard Huet, as a tribute): a popular generic theorem prover
Coherence of Heyting’s arithmetic in Coq
Dependent Types
Symmetry in HOL
Isabelle (named by Lawrence Paulson after the daughter of Gérard Huet, as a tribute): a popular generic theorem prover
Coherence of Heyting’s arithmetic in Coq
Page du cours
TD9 : Définitions inductives de prédicats et analyse par cas
NB: Boards are finite. Number of configurations:
Coherence of Heyting’s arithmetic in Coq
Algèbre intiale (pour un foncteur)
Imprédicativité:
Comment pallier le problème de définition circulaire des candidats de réductibilité $Red(∀X. A)$ ?
Introduction
Dans une Catégorie Cartésienne Close (CCC)
Espaces cohérents
Catégories $Coh$ et $Stab$
Rappel: Le bang $!: Stab ⟶ Coh$ est l’adjoint à gauche du foncteur d’oubli $𝒰: Coh ⟶ Stab$:
Traduction de Girard
Réseaux de preuves pour MLL
Expression, dans Peano, du fait que $Red_ρ(A)$ est un candidat de réductibilité:
1. Le produit monoïdal $\otimes$ de $PCoh$
Nouveau professeur pour cette seconde partie : Michele Pagani
Expressivité
Th: Let $M$ be a PCF program, then \[⟦M⟧ = n \text{ iff } M ⟶^\ast \underline{n}\]
cf. Linear Logic, Girard (1987)
Caractérisation des espaces cohérents
In Probabilistic Coherence Spaces, $𝒫(𝒜)$ is closed under $\sup$
1. Le produit monoïdal $\otimes$ de $PCoh$
1. Le produit monoïdal $\otimes$ de $PCoh$
1. Le produit monoïdal $\otimes$ de $PCoh$
Algèbre intiale (pour un foncteur)
Imprédicativité:
Comment pallier le problème de définition circulaire des candidats de réductibilité $Red(∀X. A)$ ?
Expression, dans Peano, du fait que $Red_ρ(A)$ est un candidat de réductibilité:
Introduction
Dans une Catégorie Cartésienne Close (CCC)
Espaces cohérents
Catégories $Coh$ et $Stab$
Rappel: Le bang $!: Stab ⟶ Coh$ est l’adjoint à gauche du foncteur d’oubli $𝒰: Coh ⟶ Stab$:
Traduction de Girard
Réseaux de preuves pour MLL
Nouveau professeur pour cette seconde partie : Michele Pagani
Expressivité
Th: Let $M$ be a PCF program, then \[⟦M⟧ = n \text{ iff } M ⟶^\ast \underline{n}\]
cf. Linear Logic, Girard (1987)
Caractérisation des espaces cohérents
In Probabilistic Coherence Spaces, $𝒫(𝒜)$ is closed under $\sup$
Algèbre intiale (pour un foncteur)
Imprédicativité:
Comment pallier le problème de définition circulaire des candidats de réductibilité $Red(∀X. A)$ ?
Expression, dans Peano, du fait que $Red_ρ(A)$ est un candidat de réductibilité:
Introduction
Dans une Catégorie Cartésienne Close (CCC)
Espaces cohérents
Catégories $Coh$ et $Stab$
Rappel: Le bang $!: Stab ⟶ Coh$ est l’adjoint à gauche du foncteur d’oubli $𝒰: Coh ⟶ Stab$:
Traduction de Girard
Réseaux de preuves pour MLL
Nouveau professeur pour cette seconde partie : Michele Pagani
Expressivité
Th: Let $M$ be a PCF program, then \[⟦M⟧ = n \text{ iff } M ⟶^\ast \underline{n}\]
cf. Linear Logic, Girard (1987)
Caractérisation des espaces cohérents
In Probabilistic Coherence Spaces, $𝒫(𝒜)$ is closed under $\sup$
1. Le produit monoïdal $\otimes$ de $PCoh$
Algèbre intiale (pour un foncteur)
1. Le produit monoïdal $\otimes$ de $PCoh$
Algèbre intiale (pour un foncteur)
Imprédicativité:
Comment pallier le problème de définition circulaire des candidats de réductibilité $Red(∀X. A)$ ?
Expression, dans Peano, du fait que $Red_ρ(A)$ est un candidat de réductibilité:
Introduction
Dans une Catégorie Cartésienne Close (CCC)
Espaces cohérents
Catégories $Coh$ et $Stab$
Rappel: Le bang $!: Stab ⟶ Coh$ est l’adjoint à gauche du foncteur d’oubli $𝒰: Coh ⟶ Stab$:
Traduction de Girard
Réseaux de preuves pour MLL
Nouveau professeur pour cette seconde partie : Michele Pagani
Expressivité
Th: Let $M$ be a PCF program, then \[⟦M⟧ = n \text{ iff } M ⟶^\ast \underline{n}\]
cf. Linear Logic, Girard (1987)
Caractérisation des espaces cohérents
In Probabilistic Coherence Spaces, $𝒫(𝒜)$ is closed under $\sup$
1. Le produit monoïdal $\otimes$ de $PCoh$
1. Le produit monoïdal $\otimes$ de $PCoh$
1. Le produit monoïdal $\otimes$ de $PCoh$
Méthode utilisée pour compiler les exceptions
DM Programmation I
DM Programmation I
TD2 de Programmation 1
1. Portée
Simon Halfon :
Structures de données
Modes d’appels
Sémantique
DM Programmation I
Plotkin et le PCF
TD : flux d’information sûrs
EX 1
Méthode utilisée pour compiler les exceptions
TD : flux d’information sûrs
TD2 de Programmation 1
1. Portée
Simon Halfon :
EX 1
Structures de données
Modes d’appels
Sémantique
DM Programmation I
Plotkin et le PCF
Etienne Lozes
Etienne Lozes
TD2 de Programmation 1
Méthode utilisée pour compiler les exceptions
Méthode utilisée pour compiler les exceptions
TD : flux d’information sûrs
TD2 de Programmation 1
1. Portée
Simon Halfon :
EX 1
Méthode utilisée pour compiler les exceptions
TD : flux d’information sûrs
TD2 de Programmation 1
1. Portée
Simon Halfon :
EX 1
Méthode utilisée pour compiler les exceptions
Structures de données
Méthode utilisée pour compiler les exceptions
TD2 de Programmation 1
Structures de données
Méthode utilisée pour compiler les exceptions
Structures de données
Modes d’appels
Sémantique
Plotkin et le PCF
Etienne Lozes
Structures de données
Modes d’appels
Sémantique
Plotkin et le PCF
Etienne Lozes
Méthode utilisée pour compiler les exceptions
TD : flux d’information sûrs
Etienne Lozes
Modes d’appels
Sémantique
DM Programmation I
Plotkin et le PCF
TD2 de Programmation 1
1. Portée
Simon Halfon :
EX 1
Modes d’appels
Sémantique
DM Programmation I
Plotkin et le PCF
Etienne Lozes
1. Portée
Modes d’appels
1. Portée
Modes d’appels
Etienne Lozes
1. Portée
1. Portée
Modes d’appels
Méthode utilisée pour compiler les exceptions
TD : flux d’information sûrs
TD2 de Programmation 1
1. Portée
Simon Halfon :
EX 1
Structures de données
DM Programmation I
Etienne Lozes
Structures de données
Simon Halfon :
EX 1
Sémantique
DM Programmation I
Plotkin et le PCF
TD : flux d’information sûrs
Structures de données
TD2 de Programmation 1
Teachers: Bruno Barras & Matthieu Sozeau
Teachers: Bruno Barras & Matthieu Sozeau
Teacher: Bruno Barras
Teacher: Bruno Barras
Teachers: Bruno Barras & Matthieu Sozeau
Teachers: Bruno Barras & Matthieu Sozeau
Teacher: Bruno Barras
Teacher: Bruno Barras
Teachers: Bruno Barras & Matthieu Sozeau
Teachers: Bruno Barras & Matthieu Sozeau
Teacher: Bruno Barras
Teacher: Bruno Barras
Teachers: Bruno Barras & Matthieu Sozeau
Teachers: Bruno Barras & Matthieu Sozeau
Teacher: Bruno Barras
Teacher: Bruno Barras
Teachers: Bruno Barras & Matthieu Sozeau
Teachers: Bruno Barras & Matthieu Sozeau
Teacher: Bruno Barras
Teacher: Bruno Barras
Teachers: Bruno Barras & Matthieu Sozeau
Teachers: Bruno Barras & Matthieu Sozeau
Teacher: Bruno Barras
Teacher: Bruno Barras
Teachers: Bruno Barras & Matthieu Sozeau
Teachers: Bruno Barras & Matthieu Sozeau
Teacher: Bruno Barras
Teacher: Bruno Barras
Article: http://www.sciencedirect.com/science/article/pii/S221083271400026X
Link of slides
Recommandation
Article: http://www.sciencedirect.com/science/article/pii/S221083271400026X
Recommandation
Article: http://www.sciencedirect.com/science/article/pii/S221083271400026X
Link of slides
Recommandation
Article: http://www.sciencedirect.com/science/article/pii/S221083271400026X
Link of slides
Recommandation
Article: http://www.sciencedirect.com/science/article/pii/S221083271400026X
Link of slides
Recommandation
Link of slides
Recommandation
Article: http://www.sciencedirect.com/science/article/pii/S221083271400026X
Link of slides
Rapport: Mouvement d’Objets en Contact
Planification de mouvement
Differential Geometry
Rapport: Mouvement d’Objets en Contact
Optimisation convexe
Rapport: Mouvement d’Objets en Contact
Rapport: Mouvement d’Objets en Contact
Planification de mouvement
Optimisation convexe
Differential Geometry
Rapport: Mouvement d’Objets en Contact
Planification de mouvement
Optimisation convexe
Differential Geometry
Planification de mouvement
Optimisation convexe
Differential Geometry
Rapport: Mouvement d’Objets en Contact
Rapport: Mouvement d’Objets en Contact
Planification de mouvement
Optimisation convexe
Differential Geometry
Rapport: Mouvement d’Objets en Contact
Planification de mouvement
Optimisation convexe
Differential Geometry
Rapport: Mouvement d’Objets en Contact
Maximum likelihood
Online learning
Introduction
Summary of the class
Linear Regression and Logistic regression: particular cases of empirical risk regression
kNN: k-nearest neighbors
Probably Approximately Correct
Convex functions
Convex optimization
Practical session 1: linear regression
Practical session 3: linear regression
Practical session 2: kNN
Practical session 5: Learning theory and PAC bounds
Practical session 5: Learning theory and PAC bounds
Practical session 4: Convex optimization
Practical session 4: Convex optimization
Practical session 10: LASSO Regression
Practical session 12: Summary
Practical session 11: PCA and K-Means
Practical session 5: Learning theory and PAC bounds
Practical session 11: PCA and K-Means
Practical session 10: LASSO Regression
Practical session 4: Convex optimization
Practical session 4: Convex optimization
Probably Approximately Correct
Maximum likelihood
Practical session 11: PCA and K-Means
Practical session 4: Convex optimization
Practical session 5: Learning theory and PAC bounds
Practical session 5: Learning theory and PAC bounds
Practical session 12: Summary
Practical session 12: Summary
Practical session 3: linear regression
Practical session 5: Learning theory and PAC bounds
Practical session 5: Learning theory and PAC bounds
Practical session 10: LASSO Regression
Practical session 11: PCA and K-Means
Practical session 1: linear regression
Practical session 10: LASSO Regression
Practical session 11: PCA and K-Means
Practical session 2: kNN
Practical session 4: Convex optimization
Practical session 4: Convex optimization
Practical session 5: Learning theory and PAC bounds
Practical session 4: Convex optimization
Practical session 5: Learning theory and PAC bounds
Practical session 4: Convex optimization
Practical session 4: Convex optimization
Practical session 5: Learning theory and PAC bounds
Practical session 4: Convex optimization
Practical session 4: Convex optimization
Linear Regression and Logistic regression: particular cases of empirical risk regression
kNN: k-nearest neighbors
Probably Approximately Correct
Convex functions
Convex optimization
Maximum likelihood
Online learning
Introduction
Summary of the class
Practical session 1: linear regression
Practical session 3: linear regression
Practical session 2: kNN
Practical session 5: Learning theory and PAC bounds
Practical session 5: Learning theory and PAC bounds
Practical session 4: Convex optimization
Practical session 4: Convex optimization
Practical session 10: LASSO Regression
Practical session 12: Summary
Practical session 11: PCA and K-Means
Linear Regression and Logistic regression: particular cases of empirical risk regression
kNN: k-nearest neighbors
Probably Approximately Correct
Convex functions
Convex optimization
Maximum likelihood
Online learning
Introduction
Summary of the class
Introduction
Summary of the class
Probably Approximately Correct
Maximum likelihood
Online learning
Introduction
Summary of the class
Linear Regression and Logistic regression: particular cases of empirical risk regression
kNN: k-nearest neighbors
Convex functions
Convex optimization
Practical session 4: Convex optimization
Practical session 4: Convex optimization
Practical session 5: Learning theory and PAC bounds
Online learning
Practical session 1: linear regression
Practical session 3: linear regression
Practical session 2: kNN
Practical session 5: Learning theory and PAC bounds
Practical session 4: Convex optimization
Practical session 4: Convex optimization
Linear Regression and Logistic regression: particular cases of empirical risk regression
Practical session 1: linear regression
kNN: k-nearest neighbors
Convex functions
Practical session 3: linear regression
Practical session 2: kNN
Convex optimization
Practical session 4: Convex optimization
Practical session 4: Convex optimization
Online learning
Linear Regression and Logistic regression: particular cases of empirical risk regression
Practical session 1: linear regression
kNN: k-nearest neighbors
Probably Approximately Correct
Convex functions
Practical session 3: linear regression
Practical session 2: kNN
Convex optimization
Practical session 5: Learning theory and PAC bounds
Maximum likelihood
Practical session 4: Convex optimization
Practical session 4: Convex optimization
Online learning
Introduction
Summary of the class
Introduction
Summary of the class
Teacher: Tomas Ibarlucia
Teacher: Tomas Ibarlucia
Teacher: Tomas Ibarlucia
Teacher: Tomas Ibarlucia
Teacher: Tomas Ibarlucia
Proposition: On se fixe $ℳ, \; A ⊆ M, \; \overline{x}, \; p = p(\overline{x})$ un ensemble de $ℒ_A$-formules. Si $𝒩 \succcurlyeq ℳ$, alors ...
Théorie des modèles : vue d’ensemble
Notations et rappels
Théorie des modèles : vue d’ensemble
Notations et rappels
Teacher: Tomas Ibarlucia
Teacher: Tomas Ibarlucia
Teacher: Tomas Ibarlucia
Teacher: Tomas Ibarlucia
Teacher: Tomas Ibarlucia
Proposition: On se fixe $ℳ, \; A ⊆ M, \; \overline{x}, \; p = p(\overline{x})$ un ensemble de $ℒ_A$-formules. Si $𝒩 \succcurlyeq ℳ$, alors ...
Théorie des modèles : vue d’ensemble
Notations et rappels
Teacher: Tomas Ibarlucia
Teacher: Tomas Ibarlucia
Teacher: Tomas Ibarlucia
Teacher: Tomas Ibarlucia
Teacher: Tomas Ibarlucia
Proposition: On se fixe $ℳ, \; A ⊆ M, \; \overline{x}, \; p = p(\overline{x})$ un ensemble de $ℒ_A$-formules. Si $𝒩 \succcurlyeq ℳ$, alors ...
Théorie des modèles : vue d’ensemble
Notations et rappels
Teacher: Tomas Ibarlucia
Teacher: Tomas Ibarlucia
Teacher: Tomas Ibarlucia
Teacher: Tomas Ibarlucia
Teacher: Tomas Ibarlucia
Proposition: On se fixe $ℳ, \; A ⊆ M, \; \overline{x}, \; p = p(\overline{x})$ un ensemble de $ℒ_A$-formules. Si $𝒩 \succcurlyeq ℳ$, alors ...
Teacher: Tomas Ibarlucia
Teacher: Tomas Ibarlucia
Teacher: Tomas Ibarlucia
Teacher: Tomas Ibarlucia
Teacher: Tomas Ibarlucia
Proposition: On se fixe $ℳ, \; A ⊆ M, \; \overline{x}, \; p = p(\overline{x})$ un ensemble de $ℒ_A$-formules. Si $𝒩 \succcurlyeq ℳ$, alors ...
Théorie des modèles : vue d’ensemble
Notations et rappels
Teacher: Tomas Ibarlucia
Teacher: Tomas Ibarlucia
Teacher: Tomas Ibarlucia
Teacher: Tomas Ibarlucia
Teacher: Tomas Ibarlucia
Proposition: On se fixe $ℳ, \; A ⊆ M, \; \overline{x}, \; p = p(\overline{x})$ un ensemble de $ℒ_A$-formules. Si $𝒩 \succcurlyeq ℳ$, alors ...
Topologie générale
7. Version faible du théorème de Van Kampen
Ch 4. Revêtements
Topologie générale
7. Version faible du théorème de Van Kampen
Ch 4. Revêtements
Topologie générale
7. Version faible du théorème de Van Kampen
Ch 4. Revêtements
Topologie générale
7. Version faible du théorème de Van Kampen
Ch 4. Revêtements
Topologie générale
7. Version faible du théorème de Van Kampen
Ch 4. Revêtements
EX 1: First constructions
EX 1 : an abstract language
EX 1: Bottom-up transducers
EX 1: The power of wSkS
Introduction
[L_1 ≝ \lbrace f(g(a, \square, b)^n \circ d, h(\square, c)^n \circ d) \mid n>0 \rbrace]
digraph { rankdir=TB; NFTA -> EMSO -> MSO; MSO -> WSkS, NFTA; WSkS -> NFTA; }
wSkS
EX 1: First constructions
EX 1 : an abstract language
EX 1: Bottom-up transducers
EX 1: The power of wSkS
Introduction
[L_1 ≝ \lbrace f(g(a, \square, b)^n \circ d, h(\square, c)^n \circ d) \mid n>0 \rbrace]
digraph { rankdir=TB; NFTA -> EMSO -> MSO; MSO -> WSkS, NFTA; WSkS -> NFTA; }
wSkS
Introduction
[L_1 ≝ \lbrace f(g(a, \square, b)^n \circ d, h(\square, c)^n \circ d) \mid n>0 \rbrace]
digraph { rankdir=TB; NFTA -> EMSO -> MSO; MSO -> WSkS, NFTA; WSkS -> NFTA; }
wSkS
Introduction
EX 1: First constructions
digraph { rankdir=TB; NFTA -> EMSO -> MSO; MSO -> WSkS, NFTA; WSkS -> NFTA; }
wSkS
[L_1 ≝ \lbrace f(g(a, \square, b)^n \circ d, h(\square, c)^n \circ d) \mid n>0 \rbrace]
EX 1 : an abstract language
Introduction
EX 1: First constructions
[L_1 ≝ \lbrace f(g(a, \square, b)^n \circ d, h(\square, c)^n \circ d) \mid n>0 \rbrace]
EX 1 : an abstract language
digraph { rankdir=TB; NFTA -> EMSO -> MSO; MSO -> WSkS, NFTA; WSkS -> NFTA; }
EX 1: Bottom-up transducers
wSkS
EX 1: The power of wSkS
My ARPE internship report in pdf.
Agda basics
Let’s have a look at Brunerie Type Theory now!
My L3 internship report in pdf.
Let’s have a look at Brunerie Type Theory now!
My ARPE internship report in pdf.
My ARPE internship report in pdf.
How are we supposed to construct recursors and inductive constructors, generally speaking? And where do they even come from?
We’re beginning to talk about the crux of the matter: here are weak $𝜔$-groupoids!
Handmade partial construction of a weak $𝜔$-groupoid.
$𝜔$-groupoids might be easier to grasp from a categorical point of view with $∞$-categories
Categories with Families
Let’s have a look at Brunerie Type Theory now!
DM : Procédure de décision par résolution pour les logiques de description.
DM : Procédure de décision par résolution pour les logiques de description.
My ARPE internship report in pdf.
My ARPE internship report in pdf.
My M2 internship report in pdf.
Beginning of my M1 internship at Oxford University: it’ll have to do with Glynn Winskel’s event structures
My M1 internship report in pdf.
I’ve begun my internship at the University of Nottingham, under the supervision of Prof. Thorsten Altenkirch, Nicolai Kraus, and Paolo Capriotti.
How are we supposed to construct recursors and inductive constructors, generally speaking? And where do they even come from?
We’re beginning to talk about the crux of the matter: here are weak $𝜔$-groupoids!
Handmade partial construction of a weak $𝜔$-groupoid.
$𝜔$-groupoids might be easier to grasp from a categorical point of view with $∞$-categories
Agda basics
Categories with Families
Let’s have a look at Brunerie Type Theory now!
My L3 internship report in pdf.
My M1 internship report in pdf.
My M1 internship report in pdf.
My ARPE internship report in pdf.
My ARPE internship report in pdf.
My M2 internship report in pdf.
My M2 internship report in pdf.
My M2 internship report in pdf.
My M2 internship report in pdf.
My ARPE internship report in pdf.
I’ve begun my internship at the University of Nottingham, under the supervision of Prof. Thorsten Altenkirch, Nicolai Kraus, and Paolo Capriotti.
How are we supposed to construct recursors and inductive constructors, generally speaking? And where do they even come from?
We’re beginning to talk about the crux of the matter: here are weak $𝜔$-groupoids!
Handmade partial construction of a weak $𝜔$-groupoid.
$𝜔$-groupoids might be easier to grasp from a categorical point of view with $∞$-categories
Agda basics
Categories with Families
Let’s have a look at Brunerie Type Theory now!
My L3 internship report in pdf.
Beginning of my M1 internship at Oxford University: it’ll have to do with Glynn Winskel’s event structures
My M1 internship report in pdf.
Beginning of my M1 internship at Oxford University: it’ll have to do with Glynn Winskel’s event structures
My M1 internship report in pdf.
My M2 internship report in pdf.
My M2 internship report in pdf.
Beginning of my M1 internship at Oxford University: it’ll have to do with Glynn Winskel’s event structures
My M2 internship report in pdf.
My M1 internship report in pdf.
$𝜔$-groupoids might be easier to grasp from a categorical point of view with $∞$-categories
Categories with Families
My L3 internship report in pdf.
Beginning of my M1 internship at Oxford University: it’ll have to do with Glynn Winskel’s event structures
My M1 internship report in pdf.
Categories with Families
My L3 internship report in pdf.
How are we supposed to construct recursors and inductive constructors, generally speaking? And where do they even come from?
$𝜔$-groupoids might be easier to grasp from a categorical point of view with $∞$-categories
Categories with Families
My L3 internship report in pdf.
Beginning of my M1 internship at Oxford University: it’ll have to do with Glynn Winskel’s event structures
My M1 internship report in pdf.
My M2 internship report in pdf.
My ARPE internship report in pdf.
My ARPE internship report in pdf.
DM : Procédure de décision par résolution pour les logiques de description.
My M1 internship report in pdf.
Petit tutoriel à l’intention de mes amis pour créer leur site web.
My ARPE internship report in pdf.
Petit tutoriel à l’intention de mes amis pour créer leur site web.
Petit tutoriel à l’intention de mes amis pour créer leur site web.
My M2 internship report in pdf.
My M2 internship report in pdf.
My M2 internship report in pdf.
My ARPE internship report in pdf.
Petit tutoriel à l’intention de mes amis pour créer leur site web.
Petit tutoriel à l’intention de mes amis pour créer leur site web.
Beginning of my M1 internship at Oxford University: it’ll have to do with Glynn Winskel’s event structures
My M1 internship report in pdf.
Handmade partial construction of a weak $𝜔$-groupoid.
How are we supposed to construct recursors and inductive constructors, generally speaking? And where do they even come from?
We’re beginning to talk about the crux of the matter: here are weak $𝜔$-groupoids!
Handmade partial construction of a weak $𝜔$-groupoid.
$𝜔$-groupoids might be easier to grasp from a categorical point of view with $∞$-categories
Let’s have a look at Brunerie Type Theory now!
$𝜔$-groupoids might be easier to grasp from a categorical point of view with $∞$-categories
I’ve begun my internship at the University of Nottingham, under the supervision of Prof. Thorsten Altenkirch, Nicolai Kraus, and Paolo Capriotti.
How are we supposed to construct recursors and inductive constructors, generally speaking? And where do they even come from?
We’re beginning to talk about the crux of the matter: here are weak $𝜔$-groupoids!
Handmade partial construction of a weak $𝜔$-groupoid.
$𝜔$-groupoids might be easier to grasp from a categorical point of view with $∞$-categories
Agda basics
Categories with Families
Let’s have a look at Brunerie Type Theory now!
My L3 internship report in pdf.
My ARPE internship report in pdf.
My ARPE internship report in pdf.
I’ve begun my internship at the University of Nottingham, under the supervision of Prof. Thorsten Altenkirch, Nicolai Kraus, and Paolo Capriotti.
How are we supposed to construct recursors and inductive constructors, generally speaking? And where do they even come from?
$𝜔$-groupoids might be easier to grasp from a categorical point of view with $∞$-categories
DM : Procédure de décision par résolution pour les logiques de description.
My M2 internship report in pdf.
My ARPE internship report in pdf.
My ARPE internship report in pdf.
My ARPE internship report in pdf.
My ARPE internship report in pdf.
DM : Procédure de décision par résolution pour les logiques de description.
DM : Procédure de décision par résolution pour les logiques de description.
Handmade partial construction of a weak $𝜔$-groupoid.
How are we supposed to construct recursors and inductive constructors, generally speaking? And where do they even come from?
We’re beginning to talk about the crux of the matter: here are weak $𝜔$-groupoids!
Handmade partial construction of a weak $𝜔$-groupoid.
$𝜔$-groupoids might be easier to grasp from a categorical point of view with $∞$-categories
Let’s have a look at Brunerie Type Theory now!
My ARPE internship report in pdf.
My M1 internship report in pdf.
I’ve begun my internship at the University of Nottingham, under the supervision of Prof. Thorsten Altenkirch, Nicolai Kraus, and Paolo Capriotti.
How are we supposed to construct recursors and inductive constructors, generally speaking? And where do they even come from?
My ARPE internship report in pdf.
My M2 internship report in pdf.
My M2 internship report in pdf.
My M2 internship report in pdf.
I’ve begun my internship at the University of Nottingham, under the supervision of Prof. Thorsten Altenkirch, Nicolai Kraus, and Paolo Capriotti.
How are we supposed to construct recursors and inductive constructors, generally speaking? And where do they even come from?
My L3 internship report in pdf.
My M1 internship report in pdf.
My M2 internship report in pdf.
My ARPE internship report in pdf.
DM : Procédure de décision par résolution pour les logiques de description.
How are we supposed to construct recursors and inductive constructors, generally speaking? And where do they even come from?
Petit tutoriel à l’intention de mes amis pour créer leur site web.
Petit tutoriel à l’intention de mes amis pour créer leur site web.
My ARPE internship report in pdf.
We’re beginning to talk about the crux of the matter: here are weak $𝜔$-groupoids!
My M2 internship report in pdf.
Petit tutoriel à l’intention de mes amis pour créer leur site web.
I’ve begun my internship at the University of Nottingham, under the supervision of Prof. Thorsten Altenkirch, Nicolai Kraus, and Paolo Capriotti.
How are we supposed to construct recursors and inductive constructors, generally speaking? And where do they even come from?
We’re beginning to talk about the crux of the matter: here are weak $𝜔$-groupoids!
Handmade partial construction of a weak $𝜔$-groupoid.
$𝜔$-groupoids might be easier to grasp from a categorical point of view with $∞$-categories
Agda basics
Categories with Families
Let’s have a look at Brunerie Type Theory now!
My L3 internship report in pdf.
Handmade partial construction of a weak $𝜔$-groupoid.
Let’s have a look at Brunerie Type Theory now!
Petit tutoriel à l’intention de mes amis pour créer leur site web.
Petit tutoriel à l’intention de mes amis pour créer leur site web.