Exercises 3: Graph and Yoneda Lemma
EX 1: The Yoneda Lemma
\[Gr = 𝒢 ≝ \begin{xy} \xymatrix{ \ast \ar@/^/[d]^t \ar@/_/[d]_s \\ \ast } \end{xy}\] \[\hat{𝒞} = Set^𝒞\]1.
\[Y_0 = (\lbrace e \rbrace, ∅)\]A graph homorphism from $Y_0$ to $G = (V, E)$ corresponds to picking a vertex in $G$, and conversely any such vertex defines a morphism from $Y_0$ to $G$.
One defines the graph
\[Y_1 ≝ v_1 \overset{f}{⟶} v_2\]Similarly, a graph homorphism from $Y_1$ to $G = (V, E)$ corresponds to picking an edge in $G$, and conversely any edge defines a morphism from $Y_1$ to $G$.
2.
We want to construct a functor
\[Y: \begin{cases} 𝒢 ⟶ \hat{𝒢} = \text{Graphs} \\ 0 ⟼ Y_0 \\ 1 ⟼ Y_1 \end{cases}\]but for any category $𝒞$, now.
- The Yoneda functor:
- \[Y: \begin{cases} 𝒞 ⟶ \hat{𝒞} ≝ Set^{𝒞^{op}} \\ A ⟼ 𝒞(\_, A) \end{cases}\]
3.
With \(𝒞 = Gr ≝ \begin{xy} \xymatrix{ 0 \ar@/^/[d]^t \ar@/_/[d]_s \\ 1 } \end{xy}\)
If $G ∈ \hat{𝒢}$ is a graph with
- $G_0$ as vertices
- $G_1$ as edges
- $G_s$ as source function
- $G_t$ as target function
With the Yoneda functor:
-
$Y(0)$:
- vertices: $Y(0)(0) = 𝒞(0, 0) = \lbrace id_0 \rbrace$
- edges: $Y(0)(1) = 𝒞(1, 0) = ∅$
-
$Y(1)$:
- vertices: $Y(1)(0) = 𝒞(0, 1) = \lbrace s, t \rbrace$
- edges: $Y(1)(1) = 𝒞(1, 1) = \lbrace id_1 \rbrace$
-
source of $id_1$: $Y1s(id_1) = id_1 \circ s = s$
-
source of $id_1$: $Y1t(id_1) = id_1 \circ t = t$
4.
\[\begin{cases} \hat{𝒞}(YA, P) &≃ P(A) \\ θ &⟼ θ_A(id_A) \end{cases}\]and
\[\begin{cases} P(A) &≃ \hat{𝒞}(YA, P) \\ x &⟼ θ \text{ defined by } θ_B(f) = Pf(x) \end{cases}\]5.
$Y: 𝒞 ⟶ \hat{𝒞}$ is full and faithful: for all $A, B∈𝒞$,
\[\hat{𝒞}(YA, YB) ≃ YBA = 𝒞(A, B)\]by the Yoenda lemma
Leave a comment