F. Fages 25 Jan 2019
Exclusive Switch (Loinger et al., Phy. Rev. E, 2007) Two genes with common promoter Slow or fast binding to the promoter with rate constant k
Let us first consider a model with irreversible binding to the promotor
MA(s1) for DNA => DNA + X1.
MA(s2) for DNA => DNA + X2.
MA(d1) for X1 => _.
MA(d2) for X2 => _.
MA(b1) for DNA + X1 => DNAX1.
MA(b2) for DNA + X2 => DNAX2.
MA(sb1) for DNAX1 => DNAX1 + X1.
MA(sb2) for DNAX2 => DNAX2 + X2.
parameter(s1=1, d1=1, b1=1, sb1=10).
parameter(s2=1, d2=1, b2=1, sb2=10).
present(DNA, d). parameter(d=0.01).
draw_reactions.
draw_influences.
search_conservations.
option(time:200, method:ssa).
numerical_simulation. plot.
%slider b1 b2 sb1 sb2
generate_ctl_not.
expand_ctl(oscil(f)).
list_stable_states.
parameter(b1=1, b2=1). option(method:bsimp).
numerical_simulation. plot.
plot(show:X2, against:X1).
%slider b1 b2
plot(show:X2, against:X1).
MA(ub1) for DNAX1 => DNA + X1.
MA(ub2) for DNAX2 => DNA + X2.
parameter(ub1=2, ub2=2).
present(DNA, d). parameter(d=0.01).
use the cells below for stochastic simulations, possibly Boolean model-checking, and
explain your answer here
...
option(time:200, method:ssa).
numerical_simulation. plot.
As expected, the bistability phenomenon is far less pronounced, since the promoters can unbind, so having one of the $X_i$ binding the DNA is not sufficient anymore to keep producing $X_i$ forever (in other words, the DNAXi
states are not stable anymore).
use the cells below for stochastic simulations with sliders and
give your answer here
...
%slider b1 b2 sb1 sb2 ub1 ub2
The bistability phenomenon reappaears when $b_1, b_2 >> ub_1, ub_2$ (as expected: when binding is way more likely than unbinding, resulting in a situation similar to the without-unbinding one).
For example, with:
Parameter | Value | |
---|---|---|
$b_1, b_2$ | 100 | |
$ub_1, ub_2$ | 1 | |
$sb_1, sb_2$ | 1000 |