F. Fages, 18 Jan. 2019
clear_model.
present(A,a). present(B,b).
k1*A*B for A+B => 2*B.
k2*A for A => 2*A.
k3*B for B => _.
parameter(a=1, b=1, k1=2, k2=2, k3=1).
list_model.
draw_reactions.
draw_influences.
list_ode.
search_conservations.
option(time:40).
numerical_simulation. plot.
plot(show:B, against:A).
seed(0). numerical_simulation(method:ssa). plot.
plot(show:B, against:A).
list_stable_states.
generate_ctl_not.
expand_ctl(stable(f)).
expand_ctl(steady(f)).
expand_ctl(reachable(steady(s))).
expand_ctl(checkpoint(x,y)).
expand_ctl(checkpoint2(x,y)).
check_ctl(query: reachable(checkpoint2(not A, not B))).
check_ctl(query: reachable(checkpoint2(not B, not A))).
%slider k1 k2 k3 a b
It can
It seems that there is an offset/different phase between $A$ and $B$
write your commands in the cells below
clear_model.
present(A,a). present(B,b).
k1*A*B for A+B => 2*B.
k2*A for A => 2*A.
k3*B for B => _.
k4*A for A => _.
k5*A for _ => A.
parameter(a=1, b=1, k1=2, k2=2, k3=1, k4=1, k5=10).
list_model. draw_reactions. draw_influences. list_ode.
option(time:40).
numerical_simulation. plot.
plot(show:B, against:A).
seed(0). numerical_simulation(method:ssa). plot.
plot(show:B, against:A).
%slider k4 k5 k1 k2 k3 a b
In the stochastic semantics, the amount of $A$ and $B$ don't necessarily tend to zero, as immigration (if high enough) introduces new $A$'s, which makes the dynamics restart.
In the continuous semantics: the phase diagram ($B$ against $A$) indicates that:
The higher the difference $k5 - k4$, the closer the stochastic semantics gets to the continuous one (as immigration restart the process, preventing the quantities to become stationary at $0$)