[Nottingham Internship] strict $β$-categories in a nutshell
Is is still necessary to precise that Paolo Capriotti is behind all that?
$π$-groupoids might be easier to grasp from a categorical point of view with strict $β$-categories, about which Iβm about to give a brief presentation via $2$-categories and globular sets (the latter have already been defined here).
It all boils down to $2$-categories
Everything is said in title! But wait, what are $2$-categories anyway?
Categories
Letβs give yet another concise definition of categories first, which is deliberately circular, but will come in handy later when it comes to defining $2$-categories.
- a category $π$:
-
is a structure comprised of:
-
a class of objects:
\[\vert π \vert : Set\] -
a function which associates a set of morphisms to each pair of objects (denoted $π$ by abuse of notation):
\[π: \vert π \vert βΆ \vert π \vert βΆ Set\] -
a composition map:
\[\circ: π(y, z) Γ π(x, y) βΆ π(x, z)\] -
an identity morphism ${\rm id}_x: π(x, x)$, for all object $x$:
\[{\rm id}: \prod\limits_{ x: \vert π \vert } π(x, x)\]
such that:
-
for each morphism $f : x βΆ y$:
\[{\rm id}_x \circ f = f = f \circ {\rm id}_y\] -
the following diagram commutes:
\[\begin{xy} \xymatrix{ π(z, w) Γ π(y, z) Γ π(x, y)\ar@{->}[d] \ar@{->}[r] & π(y, w) Γ π(x, y) \ar@{->}[d] \\ π(z, w) Γ π(x, z) \ar@{->}[r] & π(x, w) } \end{xy}\]
-
$2$-Categories
$2$-categories come now into play!
- a $2$-category $π$:
-
is a structure comprised of:
-
a class of objects:
\[\vert π \vert : Set\] -
a function which associates a category - whose objects (resp. arrows) are called $1$-morphisms/$1$-cells (resp. $2$-morphisms/$2$-cells) - to each pair of objects (still noted $π$ by abuse of notation):
\[π: \vert π \vert βΆ \vert π \vert βΆ Cat\] -
a composition functor:
\[\circ': π(y, z) Γ π(x, y) βΆ π(x, z)\] -
an identity $1$-morphism ${\rm id}_x: \vert π(x, x) \vert$, for each object $x$:
\[{\rm id}: \prod\limits_{ x: \vert π \vert } \vert π(x, x) \vert\]
such that:
-
for each object $x$, ${\rm id}_x$ ${\rm id}_{ {\rm id}_x}$ are identities of $\circ'$
-
the following diagram commutes:
\[\begin{xy} \xymatrix{ π(z, w) Γ π(y, z) Γ π(x, y)\ar@{->}[d] \ar@{->}[r] & π(y, w) Γ π(x, y) \ar@{->}[d] \\ π(z, w) Γ π(x, z) \ar@{->}[r] & π(x, w) } \end{xy}\]
-
NB: as for π-groupoids, we have a horizontal and a vertical composition:
-
Horizontal Composition (along the $1$-cells):
\[\begin{xy} \xymatrix{ x\ar@/^2pc/[rr]|f="ab1"\ar@/_2pc/[rr]|{f'}="ab2"&& x'\ar@/^2pc/[rr]|g="bc1"\ar@/_2pc/[rr]|{g'}="bc2" && x'' & \ar@{~>}[rr]|{\text{horizontal}}&&& x\ar@/^2pc/[rrrr]|{g \circ' f}="a'c'1"\ar@/_2pc/[rrrr]|{g' \circ' f'}="a'c'2"&&&& x'' } \ar@2{->}@/_/"ab1";"ab2"|\alpha \ar@2{->}@/_/"bc1";"bc2"|{\alpha'} \ar@2{->}@/_/"a'c'1";"a'c'2"|{\alpha' \circ' \alpha} \end{xy}\] -
Vertical Composition (along the $2$-cells):
\[\begin{xy} \xymatrix{ x\ar@/^3pc/[rr]|f="ab1"\ar[rr]|{f'}="ab2"\ar@/_3pc/[rr]|{f''}="ab3"&& x' & \ar@{~>}[rr]|{\text{vertical}} &&& x\ar@/^2pc/[rr]|f="ac1"\ar@/_2pc/[rr]|{f''}="ac2"&& x' } \ar@2{->}"ab1";"ab2"|\alpha \ar@2{->}"ab2";"ab3"|{\alpha'} \ar@2{->}"ac1";"ac2"|{\alpha' \circ \alpha} \end{xy}\]
An interchange law is given by the fact that $\circβ$ is a functor:
\[\begin{cases} \alpha: π(x, x')(f, f') \\ \alpha': π(x, x')(f', f'') \\ \beta: π(x', x'')(g, g') \\ \beta': π(x', x'')(g', g'') \\ \end{cases} βΉ (\beta' \circ' \alpha') \circ (\beta \circ' \alpha) = (\beta' \circ \beta) \circ' (\alpha' \circ \alpha)\] \[\begin{xy} \xymatrix{ x\ar@/^3pc/[rr]|f="ab1"\ar[rr]|{f'}="ab2"\ar@/_3pc/[rr]|{f''}="ab3"&& x'\ar@/^3pc/[rr]|g="bc1"\ar[rr]|{g'}="bc2"\ar@/_3pc/[rr]|{g''}="bc3" && x'' \ar@{~>}@/_1pc/[rr]|{\text{horizontal}} && x\ar@/^3pc/[rr]|{g \circ' f}="ac1"\ar[rr]|{g' \circ' f'}="ac2"\ar@/_3pc/[rr]|{g'' \circ' f''}="ac3"&& x' \\ && \ar@{~>}[dd]|{\text{vertical}} && && && \ar@{~>}[dd]|{\text{vertical}} \\ && && && && \\ && && && && \\ x\ar@/^2pc/[rr]|f="a'b'1"\ar@/_2pc/[rr]|{f''}="a'b'2"&& x'\ar@/^2pc/[rr]|g="b'c'1"\ar@/_2pc/[rr]|{g''}="b'c'2" && x'' \ar@{~>}@/^1pc/[rr]|{\text{horizontal}}&& x\ar@/^2pc/[rrrr]|{g \circ' f}="a'c'1"\ar@/_2pc/[rrrr]|{g'' \circ' f''}="a'c'2"&&&& x'' } \ar@2{->}"ab1";"ab2"|\alpha \ar@2{->}"ab2";"ab3"|{\alpha'} \ar@2{->}"bc1";"bc2"|\beta \ar@2{->}"bc2";"bc3"|{\beta'} \ar@2{->}"ac1";"ac2"|{\beta \circ' \alpha} \ar@2{->}"ac2";"ac3"|{\beta' \circ' \alpha'} \ar@2{->}"a'b'1";"a'b'2"|{\alpha' \circ \alpha} \ar@2{->}"b'c'1";"b'c'2"|{\beta' \circ \beta} \ar@2{->}"a'c'1";"a'c'2"|{(\beta' \circ' \alpha') \circ (\beta \circ' \alpha) = (\beta' \circ \beta) \circ' (\alpha' \circ \alpha)} \end{xy}\]Strict $β$-Category
For a globular set $G$, remember that $j$-arrows could be seen as $i$-arrows, provided that $j>i$.
As a matter of fact, since
\[\begin{cases} ss = st \\ ts = tt \end{cases}\]it follows that for all $nββ^\ast$ and $f_1, \ldots, f_n β \lbrace s, t \rbrace$
\[\begin{cases} s \; f_1 \; \ldots \; f_n = s \\ t \; f_1 \; \ldots \; f_n = t \end{cases}\]So if $i < j < k$,
- $G_k$ can be seen as a set of arrows whose sources and targets are in $G_j$
- $G_j$ can be seen as a set of arrows whose sources and targets are in $G_i$
- a strict $β$-category $π$:
-
is a structure comprised of:
- a globular set $G β \bigsqcup\limits_{nβ₯0} G_n$
-
For all $i, j$ with $i < j$, a category-structure on
\[\begin{xy} \xymatrix{ G_j\ar@<-.6ex>[d]|s="s1"\ar@<.6ex>[d]|t="t1" \\ G_i } \end{xy}\]such that for all $k > j$
\[\begin{xy} \xymatrix{ G_k\ar@<-.6ex>[d]|s="s1"\ar@<.6ex>[d]|t="t1" \\ G_j\ar@<-.6ex>[d]|s="s1"\ar@<.6ex>[d]|t="t1" \\ G_i } \end{xy}\]forms a 2-category
$\not\dashv$
Leave a comment