
Transfer Report

Younesse Kaddar

Supervisor: Sam Staton

Christ Church College

Contents

1 Introduction 1

2 Exchangeability and Representation theorems 2

2.1 de Finetti’s Theorem . 2

2.1.1 Synthetic versions of de Finetti’s Theorem 8

2.2 Exchangeable modules in probabilistic programming 8

2.2.1 de Finetti on a Boolean exchangeable module 9

2.2.2 Aldous-Hoover theorem . 11

2.2.3 Abstract exchangeable modules . 12

3 Categorical models of probabilistic generative models 15

3.1 Rado topos and toposic Galois theory . 16

3.1.1 Toposic Galois approach . 19

3.2 Bipartite random graph topos . 21

4 Stochastic Memoization 22

4.1 Probabilistic local state monad . 25

4.2 Categorical semantics . 27

5 Probabilistic programming and applications 29

5.1 Relational modeling and Mondrian process . 30

5.1.1 Relational modeling in the 2-dimensional case 31

5.2 Stanford substitution cipher algorithm . 32

6 Further directions and Conclusion 35

0

Abstract

In this report, we present �ve lines of work in the form of �ve “work packages”. The

�rst three work packages are more theoretical/foundational in nature: they pertain to

understanding symmetries in probability, in the form of representation theorems (à la de

Finetti and Aldous-Hoover) generalized to arbitrary exchangeable data types in probabilistic

programming (section 2). We resort to categorical and model-theoretic tools falling under

the general framework of toposic Galois theory (section 3). These ideas are then applied to

giving a denotational semantics to stochastic memoization in a restricted setting (section 4).

The last two work packages are more applied: they concern the LazyPPL Haskell

probabilistic programming library, developed and used by our team to express nonparametric

Bayesian models declaratively, by taking advantage of Haskell’s laziness (section 5). We then

mention the idea of leveraging program synthesis and machine learning in deep probabilistic

programming for automatic model generation (section 6).

1 Introduction

“

”

I know of scarcely anything so apt to impress the imagination as the wonderful form of cosmic

order expressed by the "Law of Frequency of Error". The law would have been personi�ed

by the Greeks and dei�ed, if they had known of it. [...] The huger the mob, and the greater

the apparent anarchy, the more perfect is its sway. [...] Whenever a large sample of chaotic

elements are taken in hand and marshaled in the order of their magnitude, an unsuspected

and most beautiful form of regularity proves to have been latent all along.

In this quote [Gal94], Galton – Darwin’s half-cousin and one of the fathers of modern applied

statistics – expresses his amazement at what later became, with Kolmogorov’s rigorous formalism

of probability theory [Kol46], the Central Limit Theorem. He went on to use it as the basis

of numerous statistical methods in the �elds, among others, of biology, anthropology, and

psychology. The Central Limit Theorem, tellingly referred to as the “uno�cial sovereign

of probability theory" by Tijms [Tij07], states that the empirical mean of independently and
identically distributed (iid) random variables tends toward a normally distributed variable. Since

no assumption is made on the distribution of the original random variables, one of the far-

reaching consequences of this theorem is that probabilistic methods pertaining to normal

distributions have a larger range of applications to other kinds of distributions. However,

similarly to many other key theorems in probability theory (law of large numbers, limit theorems,

...), it relies on an arguably strong assumption: the original variables being (jointly) independent.
That is, their joint distribution ought to be determined by the individual (marginal) distributions,

which greatly simpli�es calculations of various derived probabilistic quantities.

But, taking a step back to more epistemological considerations, independence is not a property

that can easily be externally observed in a stochastic process. Thus, it is usually left as a strong

1

statistical modeling assumption inherent to the underlying random variables that generated the

observed data. A weaker notion that may be observed in practice (to a certain extent) is invariance

under various symmetries, such as exchangeability. Such symmetry invariances are clearly

implied by independence, but the converse does not hold in general (example 2.2). This is where

representation theorems, such as de Finetti’s theorem (theorem 2.3, for sequences of iid random

variables) or Aldous-Hoover (theorem 2.10, for random arrays), come into play, by providing a

sort-of reciprocal. Provided that the random variables are exchangeable (i.e. their joint probability

distribution is permutation-invariant), they are independent conditionally on a latent random

variable (e.g. in the case of coin tosses, the bias of the coin). So exchangeability (de�nition 2.1)

plays a key role at a foundational level, as well as – as we will see later (section 2.2.3) – for more

practical purposes.

2 Exchangeability and Representation theorems

2.1 de Finetti’s Theorem

de Finetti’s representation theorem [Fin37] is one of the most celebrated theorems in Bayesian

statistics [DS18], partly because it is, at a fundamental level, at the root of the justi�cation of

statistical models with parameters distributed according to a prior distribution. As such, it can

be regarded as one of the basis for both Bayesian and frequentist models involving iid random

variables (where datapoints are often assumed to be generated by such sequences of iid random

variables with distribution parameterized by an unknown parameter) [ONe09]. It relies on a

notion of permutation-invariance of the joint distribution called exchangeability.

De�nition 2.1 (Exchangeability). A countable sequence of random variables (Xn)n∈N valued

in a standard Borel space is exchangeable i� the sequence (Xn)n is equal in distribution to the

sequence (Xσ(n))n for every permutation σ ∈ S(N) of �nitely many indices, written:

(Xn)n∈N
D
= (Xσ(n))n∈N

Concretely, exchangeability expresses the fact that the probability of a particular sequence of

observations does not depend on how these observations are ordered in the sequence. Joint

independence clearly implies exchangeability, but the converse is not true.

Example 2.2 (Exchangeability is weaker than independence). Let (Xn)n∈N be a sequence of iid
random variables, and consider the family:

(X0 +Xn)n≥1

It can readily be shown to be exchangeable, but it is clearly not independent as soon as X0 is
non-deterministic. However, conditionally on X0, it is independent.

2

In essence, de Finetti’s theorem states that exchangeability does imply a weaker form of indepen-

dence though: exchangeable sequences of observations are independent conditionally on some

latent variable, or, equivalently, they can be written as mixtures of underlying iid sequences.

We write here two equivalent formulations of de Finetti’s theorem (more precisely, a general-

ization thereof due to Hewitt and Savage), the �rst one being more convenient for conveying

intuition (in our opinion), and the second one more amenable to generalizations to higher

dimensions [Pan19].

Theorem 2.3 (de Finetti–Hewitt–Savage [Fin37; HS55]).
Empirical measure version: A sequence (Xi : Ω→ S)i≥1 of random variables valued in a stan-
dard Borel space (complete separable metric space) (S,B) (where B is the Borel σ-algebra) is
exchangeable i� there almost surely exists a random probability measure µ, called the limiting

empirical measure, which is a random element in the space P(S,B) of probability measures on
(S,B) (equipped with the topology of weak convergence) such that

• µ is the limit of the sequence of random empirical measures:

µ = lim
n−→∞

µn

where each random empirical measure µn : Ω→ P(S,B) is given by (I denotes the indicator
function):

µn(ω)(A) :=
1

n

n∑
i=1

I(Xi(ω) ∈ A) for every A ∈ B, ω ∈ Ω

• conditionally on µ, the sequence (Xi)i≥1 is iid from the distribution µ:

P
(
X1 ∈ A1, . . . , Xn ∈ An | µ

)
=

n∏
i=1

µ(Ai) for all n,A1, . . . , An

or, more concisely:
P
(
(Xi)i≥1 ∈ − | µ

)
= µ⊗∞(−)

This is equally to say that the joint distribution π of the Xi’s is a mixture of distributions of iid
sequences: there exists a probability measure M (Bayesian prior, which is the distribution of the
limiting empirical measure) on the space P(S,B) of probability measures on (S,B) such that

P (X1 ∈ A1, . . . , Xn ∈ An) =

∫ n∏
i=1

µ(Ai)M(dµ)

or, more concisely, we have the integral representation:

π =

∫
µ⊗∞M(dµ)

3

Noise-outsourcing version: A sequence (Xi)i≥1 of random variables valued in a Borel space (S,B)

is exchangeable i� there exists a measurable function g : [0, 1]2 → R such that

(Xi)i≥1
D
= (g(w, ui))i≥1

where w, ui (i ≥ 1) are all iid uniform variables on [0, 1]. The sequence (g(w, ui))i≥1 is called a
representation of the original sequence.

Proof sketch. The main idea of the proof is to show that for every partition of the index set N≥1

into two in�nite blocks I and J := N≥1\I , the Xi’s for i ∈ I are iid conditionally on the Xj’s

for j ∈ J = N≥1\I . The result will follow, because the limiting frequency can be computed

from the Xj’s, and, by exchangeability, we have:

(Xk)k∈K
D
= (X`)`∈N≥1

for every in�nite K ⊆ N≥1 (1)

so in particular for K := I , the joint distribution of the Xi’s is the joint distribution of the

whole sequence.

The Xi’s are independent conditionally on the Xj ’s: This is the trickiest part of the proof.

To prove it, we use the machinery of conditional expectations, which have a couple of convenient

properties that we will take advantage of. The desired independence is equivalent to showing, by

induction on n ≥ 1, that for every i1, . . . , in ∈ I and f1, . . . , fn : S → R bounded measurable,

we almost surely have:

E
(n∏
k=1

fk(Xik) | σ(Xj : j ∈ J)
)

=
n∏
k=1

E
(
fk(Xik) | σ(Xj : j ∈ J)

)
(2)

where σ(Xj : j ∈ J) denotes the σ-algebra generated by the Xj’s. But the random variable on

the left is, by de�nition, the unique (up to almost sure equality) random variable Y satisfying:

E
(
IA

n∏
k=1

fk(Xik)
)

= E
(
IA Y

)
for all A ∈ σ(Xj : j ∈ J) (3)

So eq. (2) is equivalent to showing, for all A ∈ σ(Xj : j ∈ J):

E
(
IA

n∏
k=1

fk(Xik)
)

= E
(
IA

n∏
k=1

E
(
fk(Xik) | σ(Xj : j ∈ J)

))
(4)

4

But the left-hand side (LHS)

E
(
IA

n∏
k=1

fk(Xik)
)

= E
(
E
(
IA

n∏
k=1

fk(Xik) | σ(Xk : k ∈ N≥1\{in})
))

(by the law of iterated expectations) is equal to

E
(
IA

n∏
k=1

fk(Xik)E
(
fn(Xin) | σ(Xk : k ∈ N≥1\{in})

)
︸ ︷︷ ︸

~
= E

(
fn(Xin) | σ(Xk : k ∈ J)

)
)

by σ(Xk : k ∈ N≥1\{in})-measurability of IA, f1(Xi1), . . . , fn−1(Xin−1). Assuming ~, we then

have the following (which yields the desired eq. (2) by induction on n), by eq. (3):

E
(n∏
k=1

fk(Xik) | σ(Xj : j ∈ J)
)

= E
(
IA

n∏
k=1

fk(Xik)E
(
fn(Xin) | σ(Xk : k ∈ J)

)
| σ(Xj : j ∈ J)

)
= E

(
IA

n∏
k=1

fk(Xik) | σ(Xj : j ∈ J)
)
E
(
fn(Xin) | σ(Xk : k ∈ J)

)

The equality ~ can be proved by observing that the RHS is the conditional expectation of the

LHS given σ(Xj : j ∈ J) (by the tower property of conditional expectations since σ(Xj : j ∈
J) ⊆ σ(Xk : k ∈ N≥1\{in})). So, in the L2

space (on the underlying sample space), the RHS is

the orthogonal projection of the LHS on the subspace of σ(Xj : j ∈ J)-measurable functions.

But both random variables have the same distribution (by exchangeability eq. (1)), and hence

the same L2
-norm, so they are almost surely equal.

The Xi’s have the same distribution conditionally on the Xj ’s: This follows from ex-

changeability (eq. (1)), since all the joint distributions (Xi, Xj)j∈J , for i ∈ I , are equal. So

conditioning each Xi on (Xj)j∈J , for i ∈ I , yields the same distribution.

Example 2.4 (Boolean case). de Finetti’s original 1931 proof was in the Boolean case, where
the Xi’s are exchangeable Bernoulli-distributed coin �ips (Xi ∈ {0, 1} for every i ≥ 1). In this
setting, the empirical measure version of the theorem takes an intuitive meaning: the empirical
average Xn := 1

n

∑
1≤i≤nXi converges to the limiting frequency X∞ = limn→∞

∑
1≤i≤nXi/n

(even almost surely in this case, by the strong law of large numbers). So de Finetti states that the
observables being exchangeable implies the existence of a parameterX∞ taking values in [0, 1] (the
asymptotic empirical bias of the coin) such that, given the value of the bias X∞, the observables
are conditionally iid:

∀n ≥ 1, P (X1 = x1, . . . , Xn = xn | X∞ = θ) = θ
∑

i xi(1− θ)n−
∑

i xi

5

Pólya’s urn is another important example involving Boolean-valued exchangeable variables that

we will come back to later:

Example 2.5 (Pólya urn model). The Pólya urn model is a stochastic process producing a countable
sequence of exchangeable (but not independent) Booleans. Consider an urn that initially contains i
balls labelled true and j balls labelled false . A ball is uniformly drawn at random (its label is the
value of the draw) and is replaced in the urn together with a new ball of the same label. The process
is then repeated. Let Xk = 1 if the k-th draw is a ball marked true and Xk = 0 otherwise. The
empirical average Xn := 1

n

∑
1≤k≤nXk converges to the limiting frequency X∞ = limn→∞Xn

which has a Beta distribution B(i, j). Conditionally on X∞ = θ, the Xk’s are independent and
Bernoulli-distributed with parameter θ.

So the empirical measure version of de Finetti’s theorem states that the joint distribution of

an exchangeable sequence of random variables valued in a standard Borel space is entirely

determined by a distribution of probability measures on this space (the distribution of the

limiting empirical measure). This, in turn, enables us to decompose the distribution of the

random sequence into a (continuous) weighted sum of conditionally independent components,

the weight being given by a prior on the underlying parameter of the statistical model.

This is what brought Diaconis, Persi and Skyrms [DS18, p. 124] to say:

“

”

de Finetti’s theorem helps dispel the mystery of where the prior belief over the chances comes

from. From exchangeable degrees of belief, de Finetti recovers both the chance statistical

model of coin �ipping and the Bayesian prior probability over the chances. The mathematics

of inductive inference is just the same. If you were worried about where Bayes’ priors came

from, if you were worried about whether chances exist, you can forget your worries. de Finetti

has replaced them with a symmetry condition on degrees of belief. This is, we think you will

agree, a philosophically sensational result.

The noise-outsourcing version of de Finetti’s theorem (theorem 2.3) takes advantage of the key

following noise-outsourcing lemma:

Lemma 2.6 (Noise-outsourcing lemma). Let (X, Y) be random variables taking values in a
measurable space (S,S) and a Borel space (T,B). Then, there exists a measurable function
f : S × [0, 1]→ T and a uniform random variable u on [0, 1] independent of X such that

(X, Y)
D
= (X, f(X, u))

In other words, conditionally on X , Y can be expressed as a function of X and an independent
uniform random variable u (which encodes the conditional randomness of Y given X).

Remark 2.7. If S ∼= {∗} is a one-point space (so that X is deterministic), this is the standard

fact that the law of every Borel-valued random variable Y can be obtained as a pushforward of

the uniform measure [0, 1] (sometimes called randomization lemma).

6

In the representation (g(w, ui))i≥1 of the Xi’s in the noise-outsourcing version of de Finetti’s

theorem, the uniform random variables w, ui (i ≥ 1) manifest the fact that, conditionally on

a function of a random variable w valued in a Borel space, the sequence is iid (because the

g(w, ui)’s are iid when w is �xed).

Noise-outsourcing lemma and quasi-Borel spaces The noise-outsourcing lemma plays an

important role, among many other things, in the implementation of the LazyPPL probabilistic

programming library [PS21; Sta+] (section 5) (on the practical side) and in the axiomatization of

quasi-Borel spaces [Heu+17; Heu+18] (on the theoretical side). The latter provide a well-behaved

categorical model of probabilistic programming languages (whose types are interpreted as quasi-

Borel spaces), supporting both function spaces (cartesian closedness) and a strong commutative

monad of measures, contrary to the more standard category of measurable spaces
1
.

De�nition 2.8 (Category of quasi-Borel spaces [Heu+17]). Let Ω be a �xed uncountable standard

Borel space. A quasi-Borel space (X,MX) is a set X equipped with a set MX ⊆ XΩ
of functions

called admissible random elements, satisfying

• deterministic random elements: MX contains all the constant functions.

• stability under pre-composition with measurable functions: for every measurable

function f : Ω → Ω and every admissible random element MX 3 α : Ω → X , the

composition Ω
f−→ Ω

α−→ X is in MX .

• gluing property: if (αi)i∈N ∈MN
X is a countable family of admissible random elements

and if Ω =
⊎∞
n=1 Ui is a covering of Ω where each Ui is Borel, then the amalgamation α̃ is

in MX , where α̃(ω) := αi(ω) for every ω ∈ Ui.

A morphism f : (X,MX)→ (Y,MY) of quasi-Borel spaces is a function f : X → Y such that

for all α ∈MX , Ω
α−→ X

f−→ Y is in MY .

The category of standard Borel spaces fully embeds in the category of quasi-Borel spaces, where

MX is taken to be the measurable functions. So quasi-Borel spaces conservatively extend

standard Borel spaces, while being more categorically/type-theoretically well-behaved. As such,

they can be considered as an instantiation of synthetic measure theory, and synthetic approaches

have also been used to tackle de Finetti’s theorem over the past few years.

1
which is not cartesian closed and not known to have a commutative monad of measures

7

2.1.1 Synthetic versions of de Finetti’s Theorem

Synthetic probability and measure theory are new, emerging �elds coming in various �a-

vors [CJ19; Fri20; Heu+17; Koc11; Sim17]. One of their multiple aims is to unravel the structural

properties of probability and measure theory from an axiomatic and algebraic standpoint, by

changing the focus to the underlying categorical/axiomatic/type-theoretic foundations rather

than models thereof (such as traditional measure theory).

de Finetti’s theorem has recently been broached from the point of view of synthetic probability

theory by:

• Jacobs and Staton [JS20] in the Boolean case, in the form of a categorical limit existence

theorem.

• Fritz, Gonda and Perrone [FGP21], in the setting of Markov categories [Fri20].

The success of these approaches raises the question of whether we can push the analysis

further to other kinds of representation theorems in probability theory. An convenient concrete

framework to do so is probabilistic programming, which can be regarded as the internal language

of synthetic/categorical probability theory [Ste21]. As such, it is a powerful tool to express and

study symmetries in probability from an abstract and general point of view.

2.2 Exchangeable modules in probabilistic programming

Probabilistic programming. As previously alluded to, statistical models can also be seen

through the lens of probabilistic programming [Bor+17; Rai17; Sta17; Sta20b; Ste21; Tol+16;

vdMee+21], which constitutes a powerful and versatile way to express and analyze them, drawing

on the machinery of programming language theory and synthetic approaches to probability

theory. Probabilistic programming, a form of Bayesian machine learning, distinguishes itself

from traditional programming by the addition of three new constructs – conveniently keeping the

declaration of the statistical model and the statistical inference separate – each one corresponding

to a clause of Bayes’ law

p(x | d)︸ ︷︷ ︸
posterior

∝ p(d | x)︸ ︷︷ ︸
likelihood

× p(x)︸︷︷︸
prior

• prior: sample samples a random value from a prior distribution. This is the generative

part, in statistical parlance.

• likelihood: score (or observe): scores a value according to a likelihood function (thereby

forming an unnormalized measure) to perform (soft and/or exact) conditioning on the

observed datapoints d. This process enables us to perform inference from e�ects (obser-

vations d) to causes (parameters x), hence the name “inverse probability” it was usually

given before the 20’s [Fie06]. This is the discriminative part, in statistical parlance.

8

• posterior: normalize (or infer): normalizes the resulting unnormalized measure obtained

after applying likelihood weights, resulting in a posterior probability distribution. This is

the inference part, in statistical parlance. Rather than yielding a probability distribution, in

practice, it is enough for this construct to output a stream of samples from the unnormalized

measure (obtained from a inference algorithm such as one of the Monte Carlo methods for

example, which do not require to compute the normalizing constant). This is the approach

taken in the Haskell library LazyPPL [PS21; Sta+] (section 5).

In the following (until section 5), we will mainly focus on generative models (setting aside the

conditioning aspects for now).

2.2.1 de Finetti on a Boolean exchangeable module

Let us revisit the Boolean stochastic process examples (examples 2.4 and 2.5) in the context of

probabilistic programming. Following [Sta+18], such processes can be presented as the interface

(or signature) of an abstract module (done in a ML-like language in the paper), that we implement

here in LazyPPL. The corresponding typeclass can be written as follows:

class BoolProcess hyperparam process where
new :: hyperparam→ Prob process
get :: process → Prob Bool

A new Boolean process (of type process) parameterized by a hyperparameter (hyperparam) can

be initialized at random with new, and we can then fetch a random sequence of Booleans

from it by iteratively calling get. The abstract type of the process, in the form of a typeclass

BoolProcess – that we will henceforth refer to as module, following the ML tradition – hides

away implementation details, such as the data structure or internal state used to sample from

the process. The observational behavior of such a module can be studied with an operational or

adequate denotational semantics, irrespective of how the operations new and get are implemented

under the hood, which makes for a powerful way to abstract away its properties. Following

Staton [Sta20a; Sta21a; Sta22], we will refer to this “invariance under implementation details”

principle as the abstract type property in the sequel.

Here are two instantiations of the module BoolProcess in LazyPPL: the left-hand one being an

implementation of Pólya’s urn (initiated with i true balls and j false balls), and the right-hand

one of the Beta-Bernoulli process (Bernoulli random variables, where the prior on the coin bias

is Beta-distributed).

9

newtype Polya = Polya (IORef (Int , Int))

instance BoolProcess (Int , Int) Polya where
new (i , j) = return

$ Polya $ unsafePerformIO $ newIORef (i , j)

get (Polya ref) = do
let (i , j) = unsafePerformIO $ readIORef ref
b ← bernoulli

(fromIntegral i/fromIntegral (i+j))
if b then return

$ unsafePerformIO $ writeIORef ref (i +1, j)
>> return True

else return
$ unsafePerformIO $ writeIORef ref (i , j+1)
>> return False

newtype BetaBern = BetaBern Double

instance BoolProcess (Int , Int) BetaBern where
new (i , j) = do
θ ← beta (fromIntegral i) (fromIntegral j)
return $ BetaBern θ

get (BetaBern θ) = bernoulli θ

As previously seen (example 2.5), a countable Boolean random sequence (Xk)k≥1 generated by

Polya is exchangeable, and de Finetti’s theorem provides a representation of such a sequence:

conditionally on X∞ = θ, where X∞ ∼ B(i, j) is the limiting frequency, the Xk’s are indepen-

dent and Bernoulli-distributed with biais θ. This is precisely what BetaBern is implementing. So

Polya and BetaBern induce the same distribution on Boolean sequences, it can be shown that

they are observationally equivalent [Sta+18], and de Finetti’s theorem represents the former by

the latter.

Besides the obvious simpli�cation and stateless code transformation of the implementation

(BetaBern no longer uses mutable references and unsafePerformIO like Polya), the conceptual

clarity gained from it, and the theoretical signi�cance of such a representation (2.1), it comes

with a number of other key practical advantages [Fre]:

• parallelization: in BetaBern, successive calls to get can easily be parallelized, since we

only need to know the coin bias. This is not the case for Polya, as every draw changes the

internal state of the urn and thus depends on all the previous ones.

• potential inference improvements: in a MCMC inference algorithm, changing the

site corresponding to any one of the Xk’s in BetaBern has no impact on the others, since

they are all conditionally independent. In Polya however, any change to one of the Xk’s

systematically a�ects all the subsequent ones that depend on it.

• more e�cient computations: by conditional independence, the joint conditional distri-

bution in BoolProcess can be factorized as a product of simpler independent factors, which

can lead to faster computations.

10

2.2.2 Aldous-Hoover theorem

Exchangeable arrays. The natural question of whether we can extend the previous analysis to

a module where get now takes as input a pair of processes (get :: (process , process) → Prob Bool)
brings us to the setting of 2-dimensional random arrays [Ald81; Aus; OR15]. Random exchange-

able arrays are a useful data analysis tool to model relational data, which are observations of

binary relationships between collections of objects, e.g. graph social networks in social network

analysis, world wide web, biochemical pathways, etc. (we mention other examples in section 5.1;

the previously seen Boolean sequences can be seen as 1-dimensional arrays, modeling non-

relational observations about individual objects). Such binary relations de�ne 2-dimensional

arrays (Xi,j)i,j of Boolean random variables, where i and j range over countable collections of

potentially related objects. When we have a single (countable) collection of objects that we wish

to compare pairwise (i.e. i and j range over the same countable index), which we will assume

in what follows, the 2-dimensional random array (Xi,j)i,j can be seen as the adjacency matrix

a random graph. Naturally, we also have a notion of exchangeability for random adjacency

matrices (Xi,j)i,j , namely that the joint distribution is invariant under relabeling the nodes of

the corresponding graph.

De�nition 2.9 (Exchangeability of random arrays). A random array (Xi,j)i,j∈N is said to be

jointly (or weakly) exchangeable i� for any permutation σ ∈ S(N) of �nitely many indices, we

have:

(Xi,j)i,j∈N
D
= (Xσ(i),σ(j))i,j∈N

A random graph is said to be exchangeable i� its adjacency matrix is jointly exchangeable.

Jointly exchangeable arrays enjoy a celebrated representation theorem too: the Aldous-Hoover

representation theorem [Ald81; Hoo79; Kal89] (which can be shown with conditional expectation

techniques, in a similar way to de Finetti’s theorem).

Theorem 2.10 (Aldous-Hoover [Ald81; Hoo79]). A random array (Xi,j)i,j∈N is jointly exchange-
able i� it can be represented as follows: there exists a measurable function g : [0, 1]4 → R such
that

(Xi,j)i,j≥1
D
= (g(w, ui, uj, u{i,j}))i,j≥1

where w, ui (i ≥ 1) and u{i,j} (i, j ≥ 1) are all iid uniform variables on [0, 1] (with the convention
that u{i} = ui on the diagonal).

Remark 2.11. The random variables u{i,j} being indexed by sets denotes the fact that i, j are

unordered, so that the random array (u{i,j})i,j≥1 can be seen as triagonal. If g is additionally

symmetric in its second and third arguments, i.e. if it satis�es g(−, x, y,=) = g(−, y, x,=) for

all x, y, then (Xi,j)i,j∈N is symmetric too, i.e. Xi,j = Xj,i for all i, j. The corresponding random

graph is then undirected.

11

Aldous-Hoover and graphons. A noteworthy example where the Aldous-Hoover repre-

sentation takes a concrete and intuitive form is the case of random simple (i.e. undirected and

self-loop-free) graphs, whose adjacency matrix (Xi,j)i,j∈N is symmetric and has zero diago-

nal [DJ07; Fre; Lov12; OR15; Roy]. In this case, the exchangeable adjacency matrix can be

parametrized by a (random) measurable function G : [0, 1]2 → [0, 1] called a graphon. If ui, uj
are iid random variables corresponding to two nodes i, j ∈ N in the random simple graph,

G(ui, uj) gives the probability of there being an edge between i and j.

Lemma 2.12 (Aldous-Hoover for simple graphs [OR15]). Let (Xi,j)i,j∈N be the random adjacency
matrix of a simple graph. It is jointly exchangeable i� there is a random graphon G (i.e. a random
measurable function from [0, 1]2 to [0, 1]) and iid uniform variables (ui)i∈N and (u{i,j})i,j∈N on
[0, 1] (all independent of G) such that

(Xi,j)i,j∈N
D
=
(
I(u{i,j} < G(ui, uj))

)
i,j∈N

Moreover, if (g(w, ui, uj, u{i,j}))i,j≥1 is the Aldous-Hoover representation (theorem 2.10) of (Xi,j)i,j∈N,
G can be de�ned as

G(x, y) := P (g(w, x, y, u) = 1|w) =

∫ 1

0

g(w, x, y, u) du G(x, x) = 0 ∀x 6= y ∈ [0, 1]

where u ∼ Unif([0, 1]) is independent of G.

2.2.3 Abstract exchangeable modules

As a consequence, we have the neat result that Bayesian models modeling exchangeable simple

graphs are entirely determined (in distribution) by a prior on the space of graphons. Graphons

will come back later, when we will consider a topos-theoretic model for a small language where

we can sample from a random graph (section 3), and in the Mondrian process LazyPPL example

(section 5.1).

General exchangeable modules. The two previous examples (exchangeable Boolean se-

quences and exchangeable graphs), each coming with a representation theorem (de Finetti and

Aldous-Hoover), naturally raise the question of whether (and to what extent) this probabilistic

representation phenomenon carries over to other kinds of generative processes.

In the Pólya urn example, de Finetti’s theorem turned a stateful module (which had the abstract

type property and was generating exchangeable sequences) for the Boolean process interface

into an equivalent stateless module (so mutable state and �nite probability have been replaced

by stateless continuous probability). Abstracting away this example, one may wonder: given

an “exchangeable” stateful module with a given interface, can we �nd an equivalent stateless

module probabilistic module with the same interface?

12

But to even begin formalizing such a conjecture, we need to de�ne a general notion of ex-

changeability for such processes. At �rst glance, this might seem like a daunting task, because

exchangeability means invariance of the joint distribution under certain kinds of symmetries of

the random structures at hand, but at such a general level, we cannot easily reason on concrete

instances (such a sequences or arrays) anymore. However, Staton, Yang, Ackerman, Freer and

Roy still managed to overcome this di�culty, by elegantly framing the problem in programming

language theory [Sta+17]. It all starts with a commutativity and discardability property called

the data�ow property.

De�nition 2.13 (Data�ow property [Sta20b]). A programming language is said to have the

data�ow property i� program lines can be reordered (commutativity) and discarded (discardability,

or a�neness) provided that the data�ow is preserved. In other words, the language satis�es the

following commutativity and discardabily equations:

(let x1 = M1 in x2 = M2 in N) = (let x2 = M2 in x1 = M1 in N)
(let x1 = M1 in M2) = M2

where x1 /∈ FV(M2) and x2 /∈ FV(M1).

Remark 2.14. The data�ow property expresses the fact that, to give a meaning to programs,

the only thing that matters is the topology of data�ow diagrams. In other words, the semantics

of programs is stable under symmetries of their data�ow diagrams.

It turns out that this idea of commutativity and discardability is regarded, in synthetic probability

theory, by various authors as a fundamental aspect of the abstract axiomatization of probability:

• Kock [Koc11] argues that any monad that is strong commutative and a�ne can be abstractly

viewed as a probability monad.

• A�ne (or semi-cartesian) monoidal categories (i.e. monoidal categories where the tensorial

unit is terminal), of which the category of probability kernels is an example, are used as a

basic setting for synthetic probability by several authors [CJ19; Fri20; Sta17; SS21; Ste21].

More concretely, in a probabilistic programming language, the data�ow property corresponds

to Fubini’s theorem in the denotational semantics.

Example 2.15 (Commutativity is Fubini’s theorem and discardability marginalization). For
example, the quasi-Borel spaces (QBS) categorical model (de�nition 2.8) sati�es the data�ow property.
In this model, the meaning of a probabilistic program p returning random values of type X is a
QBS probability measure, which can be seen as an expectation calculator of the form

JpK := X
k−→ Ω 7−→

∫
Ω

k(α(ω)) dω ∈ P (X) ⊆ ((X → Ω)→ Ω)

where k : X → Ω a QBS morphism and MX 3 α : Ω → X is the admissible random element
corresponding to the interpretation of the program as a measure on the QBS X (the monad of

13

probability measures is a submonad of the continuation monad generated by admissible random
elements). Then, if the program makes, say, n consecutive samples and ω := (ω1, . . . , ωn), the
denotation of the program pσ where the sample statements are shu�ed by a permutation σ is

JpσK(k) :=

∫
Ω

k(α(ω1, . . . , ωn)) d(ωσ(n), . . . , ωσ(1)) =

∫
Ω

k(α(ω1, . . . , ωn)) d(ωn, . . . , ω1) = JpK(k)

This is Fubini’s theorem (integrals over probability spaces can be reordered). In a similar vein,
discardability corresponds to marginalizing unused variables.

This leads us to Staton et al.’s general de�nition of exchangeability for data types (or modules):

an abstract data type for a random process expressed in a probabilistic programming language

is said to be exchangeable i� adding it to the language does not break the data�ow property.

De�nition 2.16 (Data type exchangeability [Sta+17]). A data type is exchangeable i� it satis-

�es the data�ow property (commutativity and discardability) and the abstract type property

(invariance under implementation details).

Intuitively, the data�ow property is required because if p :: Prob a, then saying (for a permutation

σ) that

samplen :: Meas(a, . . . , a) = do
x1 ← sample p

...
xn ← sample p
return (x1 , . . . , xn)

has the same semantics (yields the same measure or expectation calculator) as

sampleσn :: Meas(a, . . . , a) = do
xσ(1) ← sample p

...
xσ(n) ← sample p
return (x1 , . . . , xn)

α-renaming

=

sampleσn :: Meas(a, . . . , a) = do
x1 ← sample p

...
xn ← sample p
return (xσ−1(1) , . . . , xσ−1(n))

is precisely saying that the joint distribution is invariant under permuting �nitely many indices.

Additionally, the abstract type property enforces the fact that we cannot inspect how the module

operations for a given interface are speci�cally implemented when using the module (by, for

example, looking inside Pólya’s urn, comparing two processes if they are real-valued biases, etc.).

The contrary would break the symmetries by changing the observational behavior of particular

implementations of a module.

As a consequence, the conjecture we previously alluded to (a form of generalized Aldous-Hoover

representation theorem for exchangeable modules) can �nally be stated: exchangeable data

14

type/modules ought to enjoy a representation theorem (exhibiting the class of parameterized

Bayesian models modeling the corresponding data). This constitutes our �rst work package

(possible research direction) for the DPhil thesis.

Work Package 1: Solve Staton’s conjecture:

Conjecture 2.17 (Staton’s representation conjecture). In a probabilistic programming
language including all probability distributions, every data type satisfying the data�ow and
abstract type properties is observationally equivalent to one where each operation is sampling
from a distribution.

To prove it, we may need stochastic memoization (section 4), as we will now see on a telling

example (section 3).

3 Categorical models of probabilistic generative models

Let us go back to the exchangeable random graph representation example (section 2.2.2),

and analyze it semantically from a categorical standpoint. This section draws upon Staton’s

work [Sta20a]. We all the implementations are given in LazyPPL.

Consider the following a abstract data type interface, allowing us to draw nodes at random (with

newNode) from a random graph with a countable set V = v of vertices, and inspect the presence

of edges between vertices (with isEdge):

class RandomGraph v where
newNode :: Prob v
isEdge :: (v , v) → Bool

In the spirit of lemma 2.12, for every graphon G = graphon : [0, 1]2 → [0, 1], we can write an

implementation for this interface:

class Graphon where
graphon :: (Double, Double)→ Double

instance Graphon => RandomGraph Double where
newNode = uniform
isEdge = unsafePerformIO $ do
−− sample a random seed (ie . infinitely branching rose tree):
newStdGen
g ← getStdGen
let rs = randomTree g

−− return a randomly sampled function '(Double, Double) → Bool ' from 'probIsEdge ':
return $ runProb probIsEdge rs

15

where
probIsEdge :: Prob ((Double, Double)→ Bool)
probIsEdge = memoize $ \(x , y) → bernoulli $ graphon (x , y)

assuming we have a memoization function memoize :: (a → Prob b) → Prob (a → b) (section 4).

The idea is that the graphon speci�es the probability of there being an edge between two nodes

x, y. Then, once such an edge has been sampled, its presence (or absence) between x and y
remain unchanged in the rest of the program (i.e. the edge is not resampled again), hence the

need to memoize the result.

Staton then goes on to show that such graphon-based implementations are the only ones up to

contextual equivalence, provided the module is exchangeable:

Theorem 3.1 (Staton’s Aldous-Hoover representation [Sta20a]). An implementation for the inter-
face RandomGraph is exchangeable i� it is observationally equivalent to a graphon implementation.

The proof involves building a topos model called the ‘Rado topos’, and paves the way for a

very general and elegant way to tackle similar representation problems with the categorical

machinery of Caramello’s toposic Galois theory [Car13; Car18; CL19].

3.1 Rado topos and toposic Galois theory

The proof of theorem 3.1 relies on constructing a topos (the Rado topos) containing a generic

object V (corresponding the vertex set of the Rado graph) to interpret a probabilistic language

that allows sampling a node from a graphon and testing the presence of an edge between two

nodes, in such a way that the key following observation can be made:

Lemma 3.2. Graphons [0, 1]2 → [0, 1] are in one-to-one correspondence with internal probability
measures 2V → R≥0 on V for which the Fubini theorem holds.

Let us spell this out in a bit more details. In [Sta+18; Ste21], Staton, Stein, Yang, Ackerman,

Freer and Roy construct a nominal-set-like combinatorial model of probability based on co-

variant presheaves on �nite sets FinSet → Set, where the representable I = FinSet(1,−)
is a distinguished object thought of as the space of Pólya urns. They then freely generate an

a�ne commutative monad (satisfying the Stone axioms for �nite probability [Sto49] and the

Beta-Bernoulli conjugacy equations), treating I as such.

In a similar fashion, instead of �nite sets as the category of contexts of parameters and their

substitutions, the Rado topos is built on the category of �nite graphs:

De�nition 3.3 (Rado topos). The Rado topos is de�ned as the topos

Sh(FinGrphop
emb, Jat) ↪→→ [FinGrphemb,Set]

16

of (covariant) sheaves for the atomic topology on the category FinGrphemb of �nite graphs and

embeddings (in the model-theoretic sense, as we will see later), that is, injections that do not

add or remove edges.

So for each type X (interpreted as a sheaf JX K) and �nite graph g, we have a set JX K(g),
which is thought of as the set of programs that sample nodes from a subgraph of g.

Example 3.4.

• The interpretation of Bool is the constant functor JBoolK := 2 (since the return value has to
be a Boolean): ∀g, JBoolK(g) = 2.

• The representable V := FinGrphemb(1,−) is seen as the object of vertices: ∀g, V (g) = |g|.

• There is a natural transformation isEdge: V × V → 2 testing the presence of an edge
between two vertices: ∀g, isEdgeg : |g| × |g| → 2.

The generic object V is intuitively thought of as the vertex set of the Rado graph, also known as

the Erdős-Rényi graph, or, more simply, as the (countable) random graph (because it is universal

in some sense that will be made precise).

De�nition 3.5 (Rado/Erdős-Rényi graph [Ack37; Cam13; ER59; Rad64]). The Rado graph

R = (VR, ER) is the almost surely unique graph that can be obtained in any one of these

equivalent ways:

(i) Universality: It is the countable graph that embeds every at most countable graph.

(ii) VR ∼= N, and ER(n,m) is set to be true i� the n-th binary digit of m is 1, or vice versa.

(iii) VR ∼= {p ∈ N | p is prime and p ≡ 1 mod 4}, and ER(p, q) is set to be true i� p is a

quadratic residue mod q, or vice versa.

(iv) Erdős-Rényi construction: Let VR be a countable set. For every v1, v2 ∈ VR, indepen-

dently �ip a biased coin (for a bias in (0, 1)), and ER(v1, v2) is set to be true i� the result

is heads.

As it happens, the Rado topos is equivalent to the category of continuous actions of the auto-

morphism group of the Rado graph R (which is an instance of a much more general toposic

Galois phenomenon (section 3.1.1)).

Sh(FinGrphop
emb, Jat) ' Cont(Aut(R)) (5)

Indeed, by left Kan extending the functor

F : FinGrphop
emb → Cont(Aut(R)), g 7→ Aut(R/g) := {σ ∈ Aut(R) | σ|g = idg}

17

along the covariant Yoneda embedding, we have
2

the following “nerve realization paradigm” [Lan78;

Lor20]:

FinGrphop
emb Cont(Aut(R))

[FinGrphemb,Set]

F

よ
FinGrph

op
emb

Lanよ
FinGrph

op
emb

(F)

NF := Hom(F (=),−)a

where the nerve NF satis�es, for every X ∈ Cont(Aut(R)):

NF (X)(g) ∼=
{
x ∈ X | x is supported by g︸ ︷︷ ︸

i.e. x is �xed by all σ∈Aut(R/g)

}
Furthermore, NF is fully faithful (which is equally to say that LanF (F) ∼= idCont(Aut(R)) (i.e. F is

dense)), so Cont(Aut(R)) is a re�ective subcategory of the presheaf category [FinGrphemb,Set],
hence a sheaf category [nLa], and we can show that Cont(Aut(R)) ' Sh(FinGrphop

emb, Jat).

In this Grothendieck topos Cont(Aut(R)), objects are sets X (considered as discrete spaces)

equipped with a continuous action αX : Aut(R)×X → X of the automorphism group Aut(R)
with the product topology, and morphisms are equivariant functions preserving the actions. The

axiom of choice does not hold, but the topos is nonetheless Boolean, and the internal powerobject

2X is the set of de�nable subsets (in the model theoretic sense, for the theory of graphs) of

X . This convenient description of objects as sets with structure and powerobjects as de�nable

subsets enables us to work more easily in the internal language of the Rado topos, and de�ne

the notion of internal probability measures on the set V := VR of vertices of R:

De�nition 3.6 (Internal probability measure). An internal probability measure onV ∈ Cont(Aut(R))
(for the powerobject σ-algebra) is a countably additive equivariant map from 2V to R≥0. In other

words, it is a morphism p : 2V → R≥0 such that p(V) = 1 and p(
⊎∞
i=1 Ui) =

∑∞
i=1 p(Ui), for

every internal countable disjoint sequence (Ui)i∈N of subsets of V . The sequence being internal

countable means that there exists a �nite subset C ⊆ V of parameters such that every Ui is

C-de�nable.

Every graphon G : [0, 1]2 → [0, 1] gives rise to an internal probability measure pG : 2V → R≥0

de�ned, on every C-de�nable subset U ⊆ V , where C := {v1, . . . , vn} ⊆ V , as:

2
since FinGrphop

emb is small and Cont(Aut(R)) locally small and cocomplete

18

pG(U) :=

∑
vn+1∈U

∫
[0,1]n+1

∏
i,j∈J1,n+1K

i 6=j

G(ri, rj)
ER(vi,vj)(1−G(ri, rj))

1−ER(vi,vj) d(r1, . . . , rn+1)

∫
[0,1]n

∏
i,j∈J1,nK
i 6=j

G(ri, rj)
ER(vi,vj)(1−G(ri, rj))

1−ER(vi,vj) d(r1, . . . , rn)

that is, the probability that the next vertex generated in the Rado graph will be in U . However,

not all internal probability measures arise from a graphon in such a way. Staton shows that the

ones that do are exactly those that are Fubini:

De�nition 3.7 (Fubini measure). An internal measure µ : 2V → R≥0 is said to be Fubini i� for

every equivariant function f : X2 → R≥0,∫
X

∫
X

f(x1, x2)µ(dx1)µ(dx2) =

∫
X

∫
X

f(x1, x2)µ(dx2)µ(dx1)

As a result, the representation given by lemma 3.2 can be established.

3.1.1 Toposic Galois approach

A very natural question to ask now, when it comes to the previous approach, is: what was

adhoc/speci�c to the theory of graphs, and what, on the contrary, can be abstracted away and

generalized to other module signatures? The Rado graph has many remarkable properties

(de�nition 3.5), but what makes most of these assertions true and implies the convenient

equivalence of categories eq. (5) is the following extension property:

Lemma 3.8 (Extension property). If g and g′ are �nite graphs such that g ⊆ g′ and |g′| = |g|+ 1,
then every embedding g ↪→ R can be extended to an embedding g′ ↪→ R. Equivalently, for every
�nite disjoint subsets C,D ⊆ VR, there exists a vertex v joined to all c ∈ C and to no d ∈ D.

Proof sketch. Using the natural numbers construction (item (iii)), we can see that it is the case

by setting, for example, v := 2max(C ∪D)+1 +
∑

c∈C 2c.

As a direct consequence, the Rado graph is, in model-theoretic terms, a homogeneous �rst-order

structure, for the relational theory of graphs (containing a single symmetric and irre�exive

binary relation E):

De�nition 3.9 (Homogeneous �rst-order structure). An �rst-order structure M is homogeneous
if every isomorphism between �nitely generated substructures extends to an automorphism of

M .

19

And the existence of such homogeneous �rst-order structures was studied in a general model-

theoretic setting by Fraïssé [Fra54] in the 50’s, who showed that they emerge as (co)limits

of well-behaved classes of substructures. More precisely, let L denote a �rst-order countable

language. Fraïssé de�nes the age of M , Age(M), as the class of structures isomorphic to some

�nitely generated substructure of M . He then characterizes classs of countable L-structures

that are of the form Age(M), for a countable homogeneous structure M :

Theorem 3.10 (Fraïssé’s theorem). If a non-empty class C of �nitely generated L-structures
satis�es the following conditions:

• it is an amalgamation class, that is:

– C is closed under isomorphisms

– Hereditary Property (HP): C is closed under �nitely generated substructures

– Joint Embedding Property, (JEP): if C1, C2 ∈ C , there exists D ∈ C such that
C1, C2 embed in D

– Amalgamation Property (AP): if C0, C1, C2 ∈ C such that C0 embed in C1, C2 via
fi : C0 → Ci (for i = 1, 2), there exists D ∈ C and embeddings gi : Ci → D (for
i = 1, 2) such that g1f1 = g2f2

• C contains only countably many non-isomorphic structures

then there exists a unique (up to isomorphism) countable homogeneous L-structureM , called the
Fraïssé limit of C , such that C = Age(M).

The Rado graph is the Fraïssé limit of the amalgamation class of �nite graphs and embeddings.

This suggests a recipe to mimic the approach followed in section 3.1 for more general module

interfaces:

• Start with the signature of a countable �rst-order language L.

• Consider the category C of �nitely generated L-structures and embeddings.

• If C := obC is a suitable amalagmation class with Fraïssé limit M , when do we have

Sh(Cop, Jat) ' Cont(Aut(M)) ? (6)

This is an instance of Caramello’s toposic Galois theory [Car13; Car18; CL19], who gives, in full

generality, a categorical account of when we can expect a Grothendieck site to induce such an

equivalence.

20

Remark 3.11. As the name suggests, it is a (vast) generalization of traditional Galois theory. A

Galois extension L of a �eld F ⊆ L is a �eld extension of F which is algebraic over F , and such

that F is exactly the intermediate extension F ⊆ K ⊆ L �xed by all σ ∈ Aut(L/F) (the Galois

group of the extension F ⊆ L, that is, the group of automorphisms of L that �x F). The Galois

correspondence then states that �nite intermediate extensions F ⊆ K ⊆ L are in one-to-one

correspondence with open subgroups U ⊆ Aut(L/F). Each open subgroup gives rise to a

transitive continuous action of the Galois group, so that we have the following equivalence

of categories: L L
F

op ' Contt(Aut(L/F)), where L L
F is the category of �nite intermediate

extensions and Contt(Aut(L/F)) is the category of transitive continuous actions. By taking

sheaves for the atomic topology on both sites, we then get Sh(L L
F

op
, Jat) ' Cont(Aut(L/F)).

The question then remains as to whether (and to what extent) we can obtain representation

theorems such as theorem 3.1, by working in the internal language of the topos of continuous

actions. This brings us to Work Package 2:

Work Package 2: Push further the toposic semantics approach and see if we can recover

a general class of probabilistic representation theorems such as theorem 3.1 (ties in with

Work Package 1, but from a more categorical/model-theoretic angle).

3.2 Bipartite random graph topos

We now describe our own work in progress. Drawing on the previous considerations, we turn to

the burning question of giving a semantics to stochastic memoization, which played a key role

in the graphon-based implementation involved in theorem 3.1. For Boolean-valued functions (to

start small), the idea is that we could now wish to have the following interface:

−− Atoms (randomly generated fresh names)
new_atom :: A

−− Function labels : type to be thought of as A → Bool
new_function :: F

−− Application operator making every function memoized: type of a bipartite graph
(@) :: (F , A) → Bool

where every function from a countable set of atoms
3 A (each one of which can be randomly

generated) to Bool would be defunctionalized and viewed as an inhabitant of a type F (which

would then be thought of as A→ Bool). Applying a function to an argument and memoizing

the result would then be made possible by an ‘apply’ operator (@) :: F× A→ Bool.

3
in the nominal set tradition [Pit13]

21

But requiring that the results be memoized is precisely saying that (@) :: F× A→ Bool ought

to be seen as the ‘edge’ relation of a bipartite graph (also called bigraph, for short) – with set

F of left nodes and A of right nodes – whose edges are such that their presence (or absence)

remain unchanged after being sampled, exactly like isEdge in the RandomGraph module (at the

beginning of section 3).

Analogously to the Rado topos setting, this suggests, on the denotational semantics side, that

we are looking for a topos where a random countable bigraph would play the role of the Rado

graph in the Rado topos, giving rise to a toposic Galois situation like eq. (6).

The setting is not as ideal as for the Rado graph, because there is no such thing as an almost

surely unique countable homogeneous bigraph. But it is not too bad either: there are only �ve

kinds of countable homogeneous bigraphs [GGK94]: the complete bipartite graphs, the empty

bipartite graph, the perfect matchings and their complements, and, �nally, the countable random

bipartite graph (obtained by taking two disjoint countable sets and selecting edges between

them at random
4
), which is a Fraïssé limit.

So we are in the advantageous position where we may bene�t from the toposic Galois toolbox to

study the topos Sh(BiGrphemb
op, Jat) of covariant sheaves on the category BiGrphemb of �nite

bigraphs and embeddings, in an attempt to give a semantics to stochastic memoization.

4 Stochastic Memoization

Stochastic memoization is, on the practical side, a very convenient way to implement in�nite

sequences of random variables (section 1, section 2), point processes, clustering [Sta21a] and,

more generally, nonparametric Bayesian models in probabilistic programming. Consider, for

example, the following Poisson point process implementation in LazyPPL:

poissonPP :: Double→ Double→ Prob [Double]
poissonPP lower rate = do
−− sample a sequence ' intervals :: Int → Double'
−− of successive exponential gaps between points on the real line :
intervals ← memoize $ \(_ :: Int) → exponential rate

−− return the corresponding list of points (with exponential interoccurence times),
−− starting from the ' lower ' point :
return $ scanl (+) lower $ map intervals [1..]

The memoization function memoize :: (Int → Prob Double)→ Prob (Int → Double) enables us

to elegantly write this in�nite point process in a short and purely decalartive way, with no

arbitrary truncation on the size of the returned list of points (even if, as we will see later

4
a slight modi�cation of the Erdős-Rényi proof shows its existence and almost sure uniqueness.

22

(section 5), in this speci�c example where the domain Int of the memoized function is discrete,

the laziness property of the Haskell language would be su�cient).

On the theoretical side, stochastic memoization may become of utmost importance to obtain

general representability results for exchangeable data types, such as theorem 3.1.

In the deterministic setting, memoization is known to be nothing but an innocuous speed-

up that do not change the semantics. However, in the presence of probabilistic side-e�ects,

memoizing a stochastic function f is no longer just an optimization technique. It does change the

semantics [Roy+08; Sta21a; Woo+09], enabling us to de�ne (possibly in�nite) random sequences,

which are of paramount importance in probability and statistics.

Categorically, stochastic functions are interpreted as probabilistic kernels f : X → PY in a

suitable cartesian closed category
5

– e.g. the category of quasi-Borel spaces (de�nition 2.8) –

where P is a probability monad. Stochastic memoization (simply referred to as ‘memoization’

henceforth) is then internally expressed as a morphism

memX,Y : (PY)X −→ P (Y X)

converting a probabilistic kernel (which associates, for every given input in X , a random output

in Y) into a random function X → Y (randomly choosing all the outputs for all the possible

inputs at once). If f is written as a lambda-abstraction λx. u : X → PY , memX,Y (f) will be

denoted by
6 λמx. u.

For �nite types X , memoization is straightforward (it is a matter of simply sampling a value of

f(x) for all inhabitants of x ∈ X , and returning the assignment as a �nite mapping). In practice,

even for Int in Haskell, we can exploit laziness (see section 5). But what about an uncountable

type X? (We cannot just range over an uncountable space for all x anymore.)

The category of quasi-Borel spaces is unfortunately known not to support memoization in

general [Sta21b]: Staton came up with a proof of this fact using graphons, but there is also a

more elementary proof by Kallianpur [Kal13, example 1.2.5, p.10] using Fubini’s theorem (special

thanks to Dario Stein for pointing this out).

The �rst implementation of ‘memoize’ that comes to mind uses state to store previously seen

values. But usually, using memory compromises the data�ow property (the state monad is not

commutative). However, we conjecture that ‘memoize’ is a special kind of stateful operation

that do preserve the data�ow property:

Conjecture 4.1. Stochastic memoization still admits the data�ow property (even if one resorts to
hidden state).

5
cartesian closedness enables us to model higher-order functions

6
borrowing Melliès’ use of the Hebrew letter “mem” [Mel14], to mean “memoization” here

23

One way to prove such a conjecture is to exhibit a denotational model, which we attempt in

this section (drawing on our term paper work, where more details can be found), in a restricted

setting. We consider a small simply typed language to shed light on three features that we model

semantically:

• name generation: we can generate fresh names (referred to as atomic names or atoms, in

the sense of Pitt’s nominal set theory [Pit13]) with constructs such as let x = fresh() in · · · .

• basic probabilistic e�ects: for illustrative purposes, the only distribution we con-

sider, as a �rst step, is the Bernoulli distribution with bias p = 1/2. Constructs like

let b = flip() in · · · amount to �ipping a fair coin and storing its result in a variable b.

• stochastic memoization: if a stochastic function f – memoized with the new λמ operator

– is called twice on the same argument, it should return the same result.

We have the following base types: bool (booleans), A (atomic names), and F (intended for

memoized functions A→ bool). For the sake of simplicity, we do not have arbitrary function

types.

A,B ::= bool | A | F | A×B

In �ne-grained call-by-value fashion [Lev06], there are two kinds of judgments: typed values,

and typed computations.

Values:

−
Γ, x : A `v x : A

Γ `v v : A Γ `v w : B

Γ `v (v, w) : A×B
−

Γ `v true : bool

−
Γ `v false : bool

Computations:
Γ `v v : A

Γ `c return(v) : A

Γ `c u : A Γ, x : A `c t : B

Γ `c let val x ← u in t : B

Matching:

Γ `v v : bool Γ `c u : A Γ `c t : A

Γ `c if v thenu else t : A

Γ `v v : A×B Γ, x : A, y : B `c t : C

Γ `c match v as (x, y) in t : C

Language-speci�c commands:

−
Γ `c flip() : bool

−
Γ `c fresh() : A

Γ `v v : A Γ `v w : A
Γ `c (v = w) : bool

24

Γ `v v : F Γ `v w : A
Γ `c (v@w) : bool

Γ, x : A `c u : bool

Γ `c λמx. u : F

We work in the (cartesian closed) category of covariant presheaves on the category

BiGrphemb := (Grphemb ↪→ Grph) ↓ (Grph
∆K2←−−− ∗)

of �nite bipartite graphs (henceforth called bigraphs) and embeddings (that do not add or remove

edges).

Notation 4.2. For a bigraph g, we denote by gL (resp. gR) and Eg
its set of left (resp. right)

nodes and its edge relation.

The denotation of basic types is given by:

JFK = BiGrphemb(◦,−) JAK = BiGrphemb(•,−)

where ◦ and • are the one-vertex left and right graphs respectively. The denotation of the type

of booleans is the constant presheaf 2 ∼= 1 + 1, as usual.

For a bigraph g and a presheaf X = JX K, X(g) is thought of as the set of generative model-

s/programs of type X that may use the bigraph g, in the following sense: probabilistic function

(that we want to memoize) and atom labels are stored as left and right nodes respectively. The

presence (resp. absence) of an edge between a given left and right node memoizes the fact that a

probabilistic call of the corresponding function on the corresponding atom has resulted in true
(resp. false).

For every embedding ι : g ↪→ g′, the function Xι : X(g) → X(g′) models substitution in the

programs in X(g) according to ι.

Remark 4.3. The model will soon be re�ned to the subtopos of sheaves over BiGrphemb for the

atomic Grothendieck topology, as discussed in section 3.2. The sheaf condition expresses the

fact that if two bigraphs g1, g2 have a common intersection g and x ∈ X(g1) ∩X(g2), then the

program x can be regarded as only using g, so that x ∈ X(g) [Sta06].

4.1 Probabilistic local state monad

In the following, X, Y, Z : BiGrphemb → Set denote presheaves, g = (gL, gR, E
g), g′, h, h′ ∈

BiGrphemb bigraphs, and ι, ι′ : g ↪→ g′ bigraph embeddings. We will omit subscripts when they

are clear from the context.

Inspired from Plotkin and Power’s local state monad [PP02] (which was de�ned on the covariant

presheaf category [Inj,Set], where Inj is the category of �nite sets and injections), we model

25

probabilistic and name generation e�ects by the following monad, that we name ‘probabilistic

local state monad’:

De�nition 4.4 (Probabilistic local state monad). For all covariant presheafX : BiGrphemb → Set
and bigraph g ∈ BiGrphemb:

T (X)(g) :=

(
Pf

∫ g↪→h (
X(h)× [0, 1](h−g)L

))[0,1]gL

where Pf is the �nite distribution monad.

The monad T is similar to the read-only local state monad, except that any fresh node can be

initialized. Every λ ∈ [0, 1]gL is thought of as the probability of the corresponding function/left

node being true on a new fresh atom. We will refer to such a λ as a state of biases. The coend

takes care of garbage collection.

Notation 4.5. Equivalence classes in

∫ g↪→h
X(h) × [0, 1](h−g)L are written [xh, λ

h]g. We use

Dirac’s bra-ket notation

∣∣[xh, λh]g〉h to denote a formal column vector of equivalence classes

ranging over a �nite set of h’s. As such, a formal convex sum

∑
i pi[xhi , λ

hi]g ∈ Pf

∫ g↪→h
X(h)×

[0, 1](h−g)L will be concisely denoted by

〈−→p ∣∣ [xh, λh]g〉h.

De�nition 4.6 (Action of T (X) on morphisms).

T (X)(g
ι
↪−→ g′) :



(
Pf

∫ g↪→h
X(h)× [0, 1](h−g)L

)[0,1]gL

−→
(
Pf

∫ g′↪→h′

X(h′)× [0, 1](h
′−g′)L

)[0,1]g
′
L

ϑ 7→ [0, 1]g
′
L
−◦ιL−−−→ [0, 1]gL

ϑ−→ Pf

∫ g↪→h
X(h)× [0, 1](h−g)L

Pfψg,g′−−−−→ Pf

∫ g′↪→h′

X(h′)× [0, 1](h
′−g′)L

where

• the map

∫ g↪→h
X(h)× [0, 1](h−g)L

ψg,g′−−−→
∫ g′↪→h′

X(h′)× [0, 1](h
′−g′)L

is given by:X(h)× [0, 1](h−g)L → X(h
∐

g g
′)× [0, 1](h

∐
g g
′−g′)L →

∫ g′↪→h′
X(h′)× [0, 1](h

′−g′)L

(xh, λ
h) 7−→ (X(h ↪→ h

∐
g g
′)(xh), λ

h) 7−→ [X(h ↪→ h
∐

g g
′)(xh), λ

h]g′

extranat. in h∫ g↪→h
X(h)× [0, 1](h−g)L

ψg,g′−−−→
∫ g′↪→h′

X(h′)× [0, 1](h
′−g′)L

• ιL : gL ↪→ g′L is the embedding restricted to left nodes.

26

• h
∐

g g
′
is the pushout in the category of graphs regarded as an object of BiGrphemb:

g g′

h h
∐

g g
′

y

Notation 4.7. More concretely, with Dirac’s convenient bra-ket notation, T (X)(g
ι
↪−→ g′) can

be written as:

T (X)(ι) =


(
Pf

∫ g↪→h
X(h)× [0, 1](h−g)L

)[0,1]gL

−→
(
Pf

∫ g′↪→h′
X(h′)× [0, 1](h

′−g′)L
)[0,1]g

′
L

ϑ 7−→ λ′ 7→ let ϑ(λ′ιL) =
〈−→p ∣∣ [xh, λh]g〉h in

〈−→p ∣∣∣ [X(h ↪→ h
∐

g g
′)(xh), λ

h]g′
〉
h

As argued in section 2.2.3, to construct an abstract model of probability, we show that the monad

is commutative and a�ne:

Theorem 4.8. The probabilistic local state monad T is strong commutative and a�ne.

4.2 Categorical semantics

In our language, the denotational interpretation of values, computations (return and let binding),

and matching (elimination of bool’s and product types) is standard.

We interpret computation judgements Γ `c t : A as morphisms JΓK → T (JAK), by induction

on the structure of typing derivations. The context Γ is built of bool’s, A and F and products.

Therefore, JΓK is isomorphic to an object of the form 2k×BiGrphemb(◦,−)`×BiGrphemb(•,−)m.

De�nition 4.9. For every bigraph g, we denote by Rg (resp. Lg) the set of bigraphs h ∈
g/BiGrphemb having one more right (resp. left) node than g, and that are the same otherwise.

Rg := { h ∈ BiGrphemb | hL = gL, gR ⊆ hR and |hR| = |gR|+ 1 }
Lg := { h ∈ BiGrphemb | hR = gR, gL ⊆ hL and |hL| = |gL|+ 1 }

Denotation of Γ `c fresh() : A

The map JfreshKg : JΓK(g) → T (JAK)(g) randomly chooses connections to each left node

according to the state of biases, and makes a fresh right node with those connections.

JfreshKg :


2k × BiGrphemb(◦, g)` × BiGrphemb(•, g)m −→ Pf(gR + 2gL)[0,1]gL

_, _, _ 7→ λ 7→
〈

1

Z

∏
¤∈gL

λ(¤)E
h(¤,ah(•))(1− λ(¤))1−Eh(¤,ah(•))

∣∣∣∣ [•︸︷︷︸
∼= (h−g)R

ah
↪−→ h, !

]
g

〉
h∈Rg

where Z is a normalization constant.

27

Remark 4.10. It is enough to consider these h’s only, by garbage collection of the coend.

Denotation of Γ `c λמx. u : F

As λמ-abstractions are formed based on computation judgements of the form Γ, x : A `c u : bool,
we �rst note that

T (JboolK)g ∼= Pf(2)[0,1]gL ∼= [0, 1][0,1]gL

Also, we can decompose the extra variable x in the environment Γ, x : A, the denotation of which

is of the form JΓ, x : AK(g) = 2k × BiGrphemb(◦, g)` × BiGrphemb(•, g)m × BiGrphemb(•, g)
for a bigraph g ∈ BiGrphemb.

Now, the extra part x is a right node, and its valuation will either be a node already in the graph

described in the rest of the environment, or a new one with particular edges to the rest of the

environment. The argument u can test (if it wants) what kind of node x is, before returning a

probability.

As a result, if

JuKg : 2k × BiGrphemb(◦, g)` × BiGrphemb(•, g)m × BiGrphemb(•, g) −→ [0, 1][0,1]gL

the denotation JuK gives us the edge probability of the left node that we need to generate, both

to the existing right nodes, and to any future right nodes (which needs to be remembered). This

can be formalized into a natural transformation Jλמx. uK : JΓK→ T (JFK).

Jλמx.uKg :


2k × BiGrphemb(◦, g)` × BiGrphemb(•, g)m −→ Pf(gL + 2gR × [0, 1])[0,1]gL

bk,
(◦ κi
↪−→ g)i,

(•
τj
↪−→ g)j

7→ λ 7→
〈

1

Z

∏
a∈gR

pE
h(¤h(◦),a)

a (1− pa)1−Eh(¤h(◦),a)

∣∣∣∣ [◦︸︷︷︸
∼= (h−g)L

¤h
↪−→ h, _ 7→ p̃

]
g

〉
h∈Lg

where

• Z is a normalization constant.

• for every a ∈ gR, pa := JuKg
(
bk, (◦ κi

↪−→ g)i, (•
τj
↪−→ g)j, •

a
↪−→ g, λ

)
• p̃ := JuKg

(
bk, (◦ κi

↪−→ g
ι1
↪−→ g + •)i, (•

τj
↪−→ g

ι1
↪−→ g + •)j, •

ι2
↪−→ g + •, λ

)
where ι1, ι2 are

the coprojections.

This semantics analysis of stochastic memoization can be extended in many ways, which brings

us to the third Work Package:

28

Work Package 3:

• Prove termination, adequacy, and full abstraction (if it holds) results.

• Give a denotational semantics to unrestricted stochastic memoization, i.e. not just for

Boolean-valued functions, and extend it to a more expressive type system (e.g. with

arbitrary function types, a non-memoized lambda abstraction, a λמ primitive, etc.).

• Is F giving some sort of closed structure (it likely is not an internal Hom, but do we

have a closed Freyd category [PT99; Sta14])?

• Rather than the �nite distribution monad in the de�nition of the probabilistic local

state monad T (de�nition 4.4), can we consider more general probabilistic monads

(e.g. the Giry monad, QBS monad, or a generic Kock monad (strong commutative

a�ne monad))?

5 Probabilistic programming and applications

We have been using LazyPPL examples all throughout this report. LazyPPL is a probabilistic

programming library, implemented in Haskell, that Staton, Paquet, Dash and I are using to

experiment with Bayesian nonparametric probabilistic programming concepts, among other

things [PS21; Sta+]. Bayesian nonparametrics is a general and elegant setting where the space

of parameters of statistical models is unbounded or in�nite dimensional.

As mentioned before (section 4), we can sometimes successfully take advantage of the host

language’s laziness to circumvent the issue of manipulating potentially in�nite structures. For

example, in LazyPPL, the opening Poisson point process example in section 4 can be rewritten

in a stateless way (without resorting to stochastic memoization) as follows:

poissonPP :: Double→ Double→ Prob [Double]
poissonPP lower rate = do

step ← exponential rate
let x = lower + step
xs ← poissonPP x rate
return (x : xs)

Thus, Haskell’s laziness enables us to express nonparametric models in a declarative way, without

explicitly and arbitrarily truncating the viewport. We now illustrate this advantage on two

examples we have personally worked on: the Mondrian process (section 5.1) and the Stanford

substitution cipher algorithm (section 5.2).

29

5.1 Relational modeling and Mondrian process

This will appear in a recently submitted paper with Sam Staton, Hugo Paquet, and Swaraj Dash.

The Mondrian process [RT09] can be seen as a k-dimensional generalization of the Poisson

point process. It is a stochastic generative process valued in axis-aligned block partitions of a

k-dimensional hypercube Θ1× · · · ×Θk (where each Θd is a closed interval of the form [ad, bd]),
that can be used as a prior on k-d trees [Ben75]. We will use it to model k-dimensional relations

Θ1 × · · · ×Θk → {True, False}.

Due to its convenient self-consistency property, the Mondrian process has been successfully used

in machine learning as a form of decision tree to de�ne a new class of random forests (called Mon-
drian forests), achieving competitive performance in online nonparametric classi�cation [LRT15]

and large-scale regression [BT15; LRT16]. It has also been used as an applied modeling tool –

e.g. in computational biology, in conjunction with a Bayesian hierarchical regression model, to

recover species interactions from the ecological system they live in [AHS13].

On top of its block domain Θ1, . . . ,Θk, a Mondrian process can be truncated in time by setting a

�xed lifetime (also referred to as budget) hyperparameter λ ∈ R. The resulting process, denoted

by M(λ,Θ1, . . . ,Θk), partitions the k-dimensional hypercube as follows. At each recursive

step, we sample the next residual time t at which a cut xd – orthogonal to one of the axes in a

dimension d ∈ {1, . . . , k} to be determined – will occur. Each axis Θd = [ad, bd] is then thought

of as an independent clock whose residual time until ringing is exponentially distributed with

rate its length bd − ad. In this competing exponential clock setting, the residual time t until one

of the clocks rings is exponentially distributed with rate the sum of the lengths

∑k
d=1 bd − ad,

and the probability that the d-th clock Θd be the �rst one to do so is proportional to bd − ad. If

t exceeds the budget λ, we stop there and return the block Θ1 × · · · ×Θk. Otherwise, we cut

the domain orthogonally to the d-th axis at xd, and recurse with remaining budget λ− t on a

left (resp. right) subdomain where Θd has been restricted to [ad, xd] (resp. [xd, bd]) and the other

dimensions are left unchanged.

This yields a k-d tree whose leaves are k-dimensional blocks partitioning the initial domain

Θ (the root of the tree) and whose internal nodes are given by a cut point xd ∈ R splitting a

subdomain Θ′ ⊆ Θ along a given axis d ∈ N. On top of that, we annotate each leaf block with a

sample p from a base distribution µ, which will be the hyperparameter of a distribution ν from

which we will sample the truth value of the relation we model at this given block. The sampling

distribution ν will typically be bernoulli for example: each block is then equipped with a bias p
and k elements (a point in the block) will be related with probability p.

In LazyPPL, we can implement it with the following abstract type and generative process (note

that the number of blocks is unbounded, so this works for any dimension k ∈ N):

data Mondrian a =
−− parameters: block bias and intervals making up the block
Block a [(Double, Double)]
−− parameters: dimension cutPosition domainIntervals subTree1 subTree2

30

| Partition Int Double [(Double, Double)] (Mondrian a) (Mondrian a)
deriving (Eq, Show)

−− Generate a random Mondrian tree:
−− a random block partition of the rectangle Θ := [a1, b1]× · · · × [ak, bk]
−− where each block has an associated random draw from the base distribution µ .
randomMondrian :: Prob a → Double→ [(Double, Double)]→ Prob (Mondrian a)
randomMondrian µ λ Θ = do
let lengths = map (\(a , b) → b − a) Θ
let sumLengths = sum lengths
t ← exponential sumLengths
if λ < t
then do p← µ ; return $ Block p Θ
else do
let remaining = λ− t
dim← 1 + categorical $ map (/sumLengths) lengths
−− if dim = d, then the cut xd is perpendicular to (ad, bd)
let (ad , bd) = Θ ‼ dim
xd ← uniformbounded ad bd
le�Mondrian ← randomMondrian µ remaining

$ zipWith (\ab i → if i == dim then (ad , xd) else ab) Θ [1 ..]
rightMondrian← randomMondrian µ remaining

$ zipWith (\ab i → if i == dim then (xd , bd) else ab) Θ [1 ..]
return $ Partition dim xd Θ le�Mondrian rightMondrian

Remark 5.1. In dimension 1 (when k = 1), the Mondrian process is a Poisson point process on

the one-dimensional domain Θ := [a1, b1].

5.1.1 Relational modeling in the 2-dimensional case

In the sequel, we assume that k = 2. Let us go back to 2D relational data modeling (mentioned

at the beginning of section 2.2.2). We have two ways of generating a synthetic relation from a

Mondrian tree: we can either sample what we will refer to as

• a ‘map relation’, of type Map (Double, Double) Bool. That is, we sample a �nite number

of (x, y) ∈ [0, 1]2 pairs, and associate to each (x, y) the result of a Bernoulli trial with bias

the bias of the block containing (x, y).

• a (potentially in�nite) ‘matrix relation’, of type [[Bool]]. That is, we sample two iid

sequences (xi)i∈N and (yj)j∈N, and set each coe�cient (i, j) of the matrix to be the result

of a Bernoulli trial with bias the bias of the block containing (xi, yj).

This leads to two sampling functions (the latter taking advantage of laziness to return potentially

in�nite matrices):

31

Figure 1: From left to right: (a) “Composition with Large Blue Plane, Red, Black, Yellow, and

Gray" by Piet Mondrian (1921); (b) 2D Mondrian tree mimicking the 1921 Mondrian painting,

and an example of a random synthetic ‘map relation’ generated from it (red cross = false
at this (x, y) coordinate, green plus = true); (c)(d) Two examples sampled from the poste-

rior distribution (using LazyPPL’s Metropolis-Hastings algorithm), trying to recover (b) from,

respectively, observed synthetic ‘matrix’ (c) and ‘map’ (d) relations.

sampleMapRelationFromMondrian2D :: Mondrian Double→ Int→ Prob (Map (Double, Double) Bool)

data Matrix = Matrix [[Bool]]
sampleMatrixRelationFromMondrian2D :: Mondrian Double→ Prob Matrix

We can then come up with two statistical models to infer a Mondrian from a dataset of either ‘map’

or ‘matrix’ observed relations. First, we sample a random Mondrian tree with randomMondrian,

and then

• in the ‘map’ case: we score every Boolean observation at a (x, y) pair (in the domain of a

‘map relation’) with the likelihood of getting this Boolean value at this (x, y) coordinate

from our Mondrian tree.

• in the ‘matrix’ case: for every ‘matrix relation’, we randomly sample iid sequences (xi)i∈N
and (yj)j∈N and score every Boolean observation in position (i, j) with the likelihood of

getting this Boolean value at (xi, yj) from our Mondrian tree.

As an example, inspired from [RT09], we try to infer a Mondrian tree stemming from an actual

1921 painting of Piet Mondrian, by observing �nite ‘matrix’ and ‘map’ relations randomly

generated from it (1).

Other examples our interface will support in future versions will be inference (with visualization)

of 3D relations, the Mondrian forest algorithm [LRT16; LRT15] for regression and classi�cation,

and making use of lazy Mondrians in the In�nite Relational Model [Kem+06].

5.2 Stanford substitution cipher algorithm

We now turn to another application, which ended up highlighting several drawbacks of LazyPPL’s

general-purpose Metropolis-Hastings-Green inference algorithm: the Stanford substitution

32

cipher algorithm presented by Diaconis in [Dia08].

As alluded to at the beginning of section 2.2.3, in LazyPPL, the ‘infer’ construct does not return

a normalized posterior, but rather produces an unbounded (by laziness) list of samples from the

unnormalized measure de�ned by the statistical model we perform the inference on, in the form

of a procedure

mh :: forall a . Double→ Meas a→ IO [(a , Product (Log Double))]

Based on the noise-outsourcing lemma (lemma 2.6), the source of randomness in LazyPPL, for

probability and unnormalized measures, does not simply come from the sample space Ω := [0, 1]
(to use the QBS notations of de�nition 2.8, on the semantic side), but from the (Borel isomorphic)

sample space Ω := [0, 1]N
∗

(where N∗ is the set of �nite strings of natural numbers) of random

rose trees, i.e. random in�nitely branching trees whose nodes (called sites) are in [0, 1]. So

Ω ∼= [0, 1]× Ωω
, which enables us to bijectively split the seed tree into an arbitrary number of

random seeds at each step.

Executing mh p model (where p ∈ [0, 1] and model:: Meas a) then roughly goes at follows:

1. The model is simulated with a randomly-generated seed tree t, producing a sample x with

a likelihood weight w.

2. We repeat the following steps ad in�nitum to produce a stream of weighted samples,

starting on (t, x, w):

(a) Randomly (lazily) resample every site in t with probability p, producing a new seed

tree t′.

(b) Run the model with t′, yielding a new sample-weight pair (x′, w′), which is the

Metropolis-Hastings (MH) proposal.

(c) Compute the MH acceptance ratio r = min(w′/w, 1), and accept the proposal with

probability r.

(d) Start again with (t′, x′, w′) if the proposal has been accepted, or with (t, x, w) other-

wise.

Keeping the inner workings of this MH algorithm in mind, let us now turn to the Stanford

substitution cipher algorithm described by Diaconis in [Dia08], to implement it in LazyPPL.

The goal of this substitution cipher algorithm is to decode a message encoded by an unknown

injective mapping of every letter from an input alphabet (typically the Latin/English alphabet)

Ain to an output alphabet (the coding alphabet) Aout. The Stanford algorithm goes as follows:

1. At the beginning, compute a transition matrix Mt := (pt(`1, `2))`1,`2∈Ain
, where pt is the

probability of letter `2 appearing after letter `1, based on a corpus of the input language

33

(say English, in the following).
7

2. Start with a given encrypted message m := m1 · · ·mn (where mi ∈ Aout for all i) and

guess at random a substitution cipher, i.e. an injective map σ : Aout → Ain.

3. Then, iterate the following MH procedure, starting from (m,σ):

(a) Apply a random transposition to σ (i.e. swap the images of two letters), producing a

new substitution cipher σ′, the MH proposal.

(b) Compute the MH ratio

r = min

(
score(σ′,m)

score(σ,m)
, 1

)
where score(τ,m) :=

∏
1≤i≤n−1

pt(τ(mi), τ(mi+1))

and accept the proposal with probability r.

(c) Repeat with the new proposal σ′ if accepted, or with σ otherwise.

Thus, it is based on a simple MH variant, where proposals are substitution ciphers slightly

di�erent from the current one (di�ering by a transposition only). However, implementing it in

LazyPPL was not straightforward (we had to tweak the model in several ways) for the following

reasons:

• No custom MH proposals: in LazyPPL, the state space of proposals is the space of

random seeds (rose trees), and changing sites of a rose tree can result in dramatically

di�erent substitution ciphers, leading to big leaps in the space of substitutions, which

prevents us from incrementally improving the score e�ciently. To partially counterbalance

this e�ect, we sample a Poisson number of transpositions in the model, and then apply

them to the current substitution cipher.

• Prior on the initial σ and number of existing words: Sampling σ from a uniform dis-

tribution resulted in a very small initial score (leading to a prohibitively long convergence

time of the MH algorithm), so we instead sampled it based on a categorical distribution

with parameters the letter frequencies in the corpus (so that the most common coded letter

was more likely to be mapped by σ to a ‘e’ rather than a ‘x’, for example). We also balanced

the score obtained from the transition matrix (the ‘transition score’) with another score

(the ‘existing-words score’), proportional to the proportion of existing English words in

the guessed decoded message σ(m) := σ(m1) · · · σ(mn), to avoid biasing the decoding

process towards the most common syllables only (irrespective of whether they are part of

an existing English word or not).

7
To be more precise, we include the probability of transitioning from a letter to a space or punctuation mark

(and vice versa) in Mt, because the words splitting is important (for the sake of simplicity, space and punctation

marks be be considered as letters henceforth).

34

• Vanishing and not-varying-enough scores: As it was, the ‘transition score’ scaled

exponentially with the size |m| of the coded message, so that it was either quickly van-

ishing or taking over the ‘existing-words score’, depending on their relative weights.
8

To

overcome this, we took the |m|-th root of the transition score (and to limit numerical

approximation errors, we had to directly work with log numbers within the model (rather

than letting LazyPPL handle it as usual)). The MH ratios were also too close to one another

in practice: the weights of the MH runs were all of the form c+ ε, for a constant c such

that ε� c. So it was too easy to haphazardly jump around in the proposal space, even

when the score diminished (because the MH ratio was still high). To mitigate this issue,

we introduced hyperparameters to diminish c accordingly (resulting in the MH ratios

varying more, and decreases of the proposal scores having more impact).

This led to the interesting question of considering, for a given statistical model, equivalent priors

that are better suited to the inference algorithm at hand. Staton has begun experimenting with

this, and this is a line of work we may pursue in the future, if we want to make the most of a

general-purpose Metropolis-Hastings-Green inference algorithm.

Work Package 4: Further develop LazyPPL, on the implementation and semantic side.

Experiment with the idea of ‘equivalent prior’ and other inference algorithms too.

6 Further directions and Conclusion

Program Synthesis and Machine Learning for automatic model generation. We brie�y

mention another fascinating research direction we would like to explore: probabilistic program-

ming is all about separating the model speci�cation and the statistical inference by automating

the latter; but the model still has to be written by hand, requiring expert domain knowledge

and/or adhoc model design. How about automating it as much as possible too? There are a

many recent lines of work attempting to do so, leveraging program synthesis and machine

learning. To name a few: on the traditional program synthesis front, various SMT solvers and

sketching-based approaches are used [EST; Nor+15]. The thriving area of machine learning is not

short of innovative ideas either: generative adversarial networks [Goo+14] (GANs), variational

auto-encoders [KW14] (VAEs), and more recently, deep learning approaches leading to the new

and vibrant �eld of ‘deep probabilistic programming’ [BHM18; Bin+18; 20; Tra20; Tra+17] (re-

quiring a good integration of probabilistic computations with automatic di�erentiation, as these

are, for the most, gradient-based methods). More recently, large language models (LLMs) based

on transformers [Vas+17] led to breakthroughs in natural language processing and computer

8
This resulted in certain letters (like f and p) not being swapped albeit being in the wrong position at the very

end.

35

vision (going as far as almost unifying the two �elds), and are already considered as viable

options for program generation [Aus+21; Che+21; 22; Jai+21; Nij+22].

Work Package 5: Explore automatic statistical model generation (with deep probabilistic

programming, program synthesis, or other machine learning generative models (GANs,

VAEs, LLMs (transformers), etc.)).

Conclusion. We have proposed various research directions in the form of �ve work packages,

ranging from

• foundational aspects: probabilistic representation theorems, toposic Galois analysis of

exchangeable data types (to get a better grasp on symmetries in probability, from a

synthetic point of view), and semantics of stochastic memoization.

• to more applied ones: new LazyPPL feature extensions (make MH more e�cient and

�exible, experiment with new inference algorithms, etc.) and applications (implement

other nonparametric Bayesian models that may shed light on other issues), explore the

idea of ‘equivalent priors’, and leverage program synthesis and machine learning in deep

probabilistic programming for automatic model generation.

References
[Ack37] Wilhelm Ackermann. “Die Widerspruchsfreiheit der allgemeinen Mengenlehre”.

In: Mathematische Annalen 114.1 (Dec. 1937), pages 305–315. issn: 0025-5831, 1432-

1807. doi: 10.1007/BF01594179. url: http://link.springer.
com/10.1007/BF01594179 (visited on 04/08/2022).

[AHS13] Andrej Aderhold, Dirk Husmeier and V. Anne Smith. “Reconstructing Ecological

Networks with Hierarchical Bayesian Regression and Mondrian Processes”. In:

Proceedings of the Sixteenth International Conference on Arti�cial Intelligence and
Statistics. Arti�cial Intelligence and Statistics. PMLR, Apr. 29, 2013, pages 75–84.

url: https://proceedings.mlr.press/v31/aderhold13a.
html (visited on 04/05/2022).

[Ald81] David J. Aldous. “Representations for Partially Exchangeable Arrays of Random

Variables”. In: Journal of Multivariate Analysis 11.4 (Dec. 1, 1981), pages 581–

598. issn: 0047-259X. doi: 10.1016/0047-259x(81)90099-3. url:

http://www.sciencedirect.com/science/article/pii/
0047259X81900993 (visited on 11/25/2020).

[Aus+21] Jacob Austin et al. “Program Synthesis with Large Language Models”. Aug. 15,

2021. arXiv:2108.07732[cs]. url:http://arxiv.org/abs/2108.
07732 (visited on 01/26/2022).

36

https://doi.org/10.1007/BF01594179
http://link.springer.com/10.1007/BF01594179
http://link.springer.com/10.1007/BF01594179
https://proceedings.mlr.press/v31/aderhold13a.html
https://proceedings.mlr.press/v31/aderhold13a.html
https://doi.org/10.1016/0047-259x(81)90099-3
http://www.sciencedirect.com/science/article/pii/0047259X81900993
http://www.sciencedirect.com/science/article/pii/0047259X81900993
https://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732

[Aus] Tim Austin. “Exchangeable Random Arrays”.

[BT15] Matej Balog and Yee Whye Teh. “The Mondrian Process for Machine Learning”.

July 18, 2015. arXiv: 1507.05181 [cs, stat]. url: http://arxiv.
org/abs/1507.05181 (visited on 10/16/2021).

[BHM18] Guillaume Baudart, Martin Hirzel and Louis Mandel. “Deep Probabilistic Program-

ming Languages: A Qualitative Study”. Apr. 17, 2018. arXiv: 1804.06458
[cs]. url: http : / / arxiv . org / abs / 1804 . 06458 (visited on

04/11/2022).

[Ben75] Jon Louis Bentley. “Multidimensional Binary Search Trees Used for Associative

Searching”. In: Communications of the ACM 18.9 (Sept. 1, 1975), pages 509–517.

issn: 0001-0782. doi: 10.1145/361002.361007. url: https://doi.
org/10.1145/361002.361007 (visited on 03/02/2022).

[Bin+18] Eli Bingham et al. “Pyro: Deep Universal Probabilistic Programming”. Oct. 18,

2018. arXiv: 1810.09538 [cs, stat]. url: http://arxiv.org/
abs/1810.09538 (visited on 04/11/2022).

[Bor+17] Johannes Borgström et al. “A Lambda-Calculus Foundation for Universal Proba-

bilistic Programming”. Jan. 23, 2017. arXiv: 1512.08990 [cs]. url: http:
//arxiv.org/abs/1512.08990 (visited on 11/26/2019).

[Cam13] Peter J. Cameron. “The Random Graph”. Jan. 31, 2013. arXiv: 1301.7544
[math]. url: http://arxiv.org/abs/1301.7544 (visited on

02/16/2021).

[Car13] Olivia Caramello. “Topological Galois Theory”. Jan. 2, 2013. arXiv: 1301.0300
[math]. url: http://arxiv.org/abs/1301.0300 (visited on

02/15/2021).

[Car18] Olivia Caramello. Theories, Sites, Toposes: Relating and Studying Mathematical The-
ories Through Topos-theoretic ’Bridges’. Oxford University Press, 2018. 381 pages.

isbn: 978-0-19-875891-4. Google Books: nAJCDwAAQBAJ.

[CL19] Olivia Caramello and Laurent La�orgue. “Some Aspects of Topological Galois

Theory”. In: Journal of Geometry and Physics 142 (Aug. 1, 2019), pages 287–317.

issn: 0393-0440. doi: 10.1016/j.geomphys.2019.04.004. url:

https://www.sciencedirect.com/science/article/pii/
S0393044019300671 (visited on 03/13/2021).

[Che+21] Mark Chen et al. “Evaluating Large Language Models Trained on Code”. July 14,

2021. arXiv:2107.03374[cs]. url:http://arxiv.org/abs/2107.
03374 (visited on 04/11/2022).

37

https://arxiv.org/abs/1507.05181
http://arxiv.org/abs/1507.05181
http://arxiv.org/abs/1507.05181
https://arxiv.org/abs/1804.06458
https://arxiv.org/abs/1804.06458
http://arxiv.org/abs/1804.06458
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://arxiv.org/abs/1810.09538
http://arxiv.org/abs/1810.09538
http://arxiv.org/abs/1810.09538
https://arxiv.org/abs/1512.08990
http://arxiv.org/abs/1512.08990
http://arxiv.org/abs/1512.08990
https://arxiv.org/abs/1301.7544
https://arxiv.org/abs/1301.7544
http://arxiv.org/abs/1301.7544
https://arxiv.org/abs/1301.0300
https://arxiv.org/abs/1301.0300
http://arxiv.org/abs/1301.0300
http://books.google.com/books?id=nAJCDwAAQBAJ
https://doi.org/10.1016/j.geomphys.2019.04.004
https://www.sciencedirect.com/science/article/pii/S0393044019300671
https://www.sciencedirect.com/science/article/pii/S0393044019300671
https://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374

[CJ19] Kenta Cho and Bart Jacobs. “Disintegration and Bayesian Inversion via String

Diagrams”. In: Mathematical Structures in Computer Science 29.7 (Aug. 2019),

pages 938–971. issn: 0960-1295, 1469-8072. doi:10.1017/s0960129518000488.

arXiv: 1709.00322. url: http://arxiv.org/abs/1709.00322
(visited on 01/25/2021).

[22] CodeGen. Salesforce, Apr. 10, 2022.url:https://github.com/salesforce/
CodeGen (visited on 04/10/2022).

[20] Deep Probabilistic Programming with Pyro. Broad Institute. July 17, 2020. url:

https://www.broadinstitute.org/talks/deep-probabilistic-
programming-pyro (visited on 08/17/2021).

[Dia08] Persi Diaconis. “The Markov Chain Monte Carlo Revolution”. In: Bulletin of
the American Mathematical Society 46.2 (Nov. 20, 2008), pages 179–205. issn:

0273-0979. doi: 10.1090/s0273-0979-08-01238-x. url: http:
//www.ams.org/journal-getitem?pii=S0273-0979-08-
01238-X (visited on 04/29/2021).

[DJ07] Persi Diaconis and Svante Janson. “Graph Limits and Exchangeable Random

Graphs”. Dec. 17, 2007. arXiv: 0712.2749 [math]. url: http://arxiv.
org/abs/0712.2749 (visited on 09/16/2021).

[DS18] Persi Diaconis and Brian Skyrms. Ten Great Ideas about Chance. Princeton: Prince-

ton University Press, 2018. 255 pages. isbn: 978-0-691-17416-7.

[EST] Kevin Ellis, Armando Solar-Lezama and Josh Tenenbaum. “Unsupervised Learning

by Program Synthesis”. In: (), page 9.

[ER59] P. Erdös and A. Rényi. “On Random Graphs I”. In: Publicationes Mathematicae
Debrecen 6 (1959), page 290.

[Fie06] Stephen E. Fienberg. “When Did Bayesian Inference Become "Bayesian"?” In:

Bayesian Analysis 1.1 (Mar. 2006), pages 1–40. issn: 1936-0975, 1931-6690. doi: 10.
1214/06-BA101.url:https://projecteuclid.org/journals/
bayesian-analysis/volume-1/issue-1/When-did-Bayesian-
inference-become-Bayesian/10.1214/06-BA101.full (vis-

ited on 04/03/2022).

[Fin37] Bruno De Finetti. “La prévision : ses lois logiques, ses sources subjectives”. In:

Annales de l’institut Henri Poincaré 7 (1937), page 69. url: http://www.
numdam.org/item/?id=AIHP_1937__7_1_1_0.

[Fra54] Roland Fraïssé. “Sur l’extension aux relations de quelques propriétés des ordres”.

In: Annales scienti�ques de l’École normale supérieure 71.4 (1954), pages 363–388.

issn: 0012-9593, 1873-2151. doi: 10.24033/asens.1027. url: http:
//www.numdam.org/item?id=ASENS_1954_3_71_4_363_0
(visited on 02/16/2021).

38

https://doi.org/10.1017/s0960129518000488
https://arxiv.org/abs/1709.00322
http://arxiv.org/abs/1709.00322
https://github.com/salesforce/CodeGen
https://github.com/salesforce/CodeGen
https://www.broadinstitute.org/talks/deep-probabilistic-programming-pyro
https://www.broadinstitute.org/talks/deep-probabilistic-programming-pyro
https://doi.org/10.1090/s0273-0979-08-01238-x
http://www.ams.org/journal-getitem?pii=S0273-0979-08-01238-X
http://www.ams.org/journal-getitem?pii=S0273-0979-08-01238-X
http://www.ams.org/journal-getitem?pii=S0273-0979-08-01238-X
https://arxiv.org/abs/0712.2749
http://arxiv.org/abs/0712.2749
http://arxiv.org/abs/0712.2749
https://doi.org/10.1214/06-BA101
https://doi.org/10.1214/06-BA101
https://projecteuclid.org/journals/bayesian-analysis/volume-1/issue-1/When-did-Bayesian-inference-become-Bayesian/10.1214/06-BA101.full
https://projecteuclid.org/journals/bayesian-analysis/volume-1/issue-1/When-did-Bayesian-inference-become-Bayesian/10.1214/06-BA101.full
https://projecteuclid.org/journals/bayesian-analysis/volume-1/issue-1/When-did-Bayesian-inference-become-Bayesian/10.1214/06-BA101.full
http://www.numdam.org/item/?id=AIHP_1937__7_1_1_0
http://www.numdam.org/item/?id=AIHP_1937__7_1_1_0
https://doi.org/10.24033/asens.1027
http://www.numdam.org/item?id=ASENS_1954_3_71_4_363_0
http://www.numdam.org/item?id=ASENS_1954_3_71_4_363_0

[Fre] Cameron Freer. “Computability of Representations of Exchangeable Data in Prob-

abilistic Programming” (CIRM, Marseille).

[Fri20] Tobias Fritz. “A Synthetic Approach to Markov Kernels, Conditional Independence

and Theorems on Su�cient Statistics”. In: Advances in Mathematics 370 (Aug.

2020), page 107239. issn: 00018708. doi: 10.1016/j.aim.2020.107239.

arXiv: 1908.07021. url: http://arxiv.org/abs/1908.07021
(visited on 01/31/2021).

[FGP21] Tobias Fritz, Tomáš Gonda and Paolo Perrone. “De Finetti’s Theorem in Categori-

cal Probability”. In: Journal of Stochastic Analysis 2.4 (Nov. 4, 2021). issn: 2689-6931.

doi: 10.31390/josa.2.4.06. url: https://digitalcommons.
lsu.edu/josa/vol2/iss4/6 (visited on 03/26/2022).

[Gal94] Francis Galton. Natural Inheritance. Macmillan and Company, 1894. 288 pages.

Google Books: a51UeN5hsEQC.

[GGK94] Martin Goldstern, R. Grossberg and Menachem Kojman. “In�nite Homogeneous

Bipartite Graphs with Unequal Sides”. Sept. 5, 1994. arXiv: math/9409204.

url: http://arxiv.org/abs/math/9409204 (visited on 02/16/2021).

[Goo+14] Ian J. Goodfellow et al. “Generative Adversarial Networks”. June 10, 2014. arXiv:

1406.2661 [cs, stat]. url: http://arxiv.org/abs/1406.
2661 (visited on 04/11/2022).

[Heu+17] Chris Heunen et al. “A Convenient Category for Higher-Order Probability Theory”.

Apr. 18, 2017. arXiv: 1701.02547 [cs, math]. url: http://arxiv.
org/abs/1701.02547 (visited on 02/11/2020).

[Heu+18] Chris Heunen et al. “The Semantic Structure of Quasi-Borel Spaces”. In: Los
Angeles (2018), page 5.

[HS55] E. Hewitt and L. J. Savage. “Symmetric Measures on Cartesian Products”. In: (1955).

doi: 10.1090/S0002-9947-1955-0076206-8.

[Hoo79] Douglas N. Hoover. Relations on Probability Spaces and Arrays of Random Variables.
Institute for Advanced Study, Princeton, 1979. url: http://www.stat.
berkeley.edu/~aldous/Research/hoover.pdf.

[JS20] Bart Jacobs and Sam Staton. “De Finetti’s Construction as a Categorical Limit”.

Sept. 26, 2020. arXiv: 2003.01964 [math]. url: http://arxiv.org/
abs/2003.01964 (visited on 11/13/2020).

[Jai+21] Naman Jain et al. “Jigsaw: Large Language Models Meet Program Synthesis”.

Dec. 6, 2021. arXiv: 2112.02969 [cs]. url: http://arxiv.org/
abs/2112.02969 (visited on 01/26/2022).

[Kal89] Olav Kallenberg. “On the Representation Theorem for Exchangeable Arrays”. In:

Journal of Multivariate Analysis 30.1 (1989), pages 137–154. doi: 10.1016/
0047-259X(89)90092-4. url: https://ideas.repec.org/a/
eee/jmvana/v30y1989i1p137-154.html (visited on 04/05/2022).

39

https://doi.org/10.1016/j.aim.2020.107239
https://arxiv.org/abs/1908.07021
http://arxiv.org/abs/1908.07021
https://doi.org/10.31390/josa.2.4.06
https://digitalcommons.lsu.edu/josa/vol2/iss4/6
https://digitalcommons.lsu.edu/josa/vol2/iss4/6
http://books.google.com/books?id=a51UeN5hsEQC
https://arxiv.org/abs/math/9409204
http://arxiv.org/abs/math/9409204
https://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1701.02547
http://arxiv.org/abs/1701.02547
http://arxiv.org/abs/1701.02547
https://doi.org/10.1090/S0002-9947-1955-0076206-8
http://www.stat.berkeley.edu/~aldous/Research/hoover.pdf
http://www.stat.berkeley.edu/~aldous/Research/hoover.pdf
https://arxiv.org/abs/2003.01964
http://arxiv.org/abs/2003.01964
http://arxiv.org/abs/2003.01964
https://arxiv.org/abs/2112.02969
http://arxiv.org/abs/2112.02969
http://arxiv.org/abs/2112.02969
https://doi.org/10.1016/0047-259X(89)90092-4
https://doi.org/10.1016/0047-259X(89)90092-4
https://ideas.repec.org/a/eee/jmvana/v30y1989i1p137-154.html
https://ideas.repec.org/a/eee/jmvana/v30y1989i1p137-154.html

[Kal13] Gopinath Kallianpur. Stochastic Filtering Theory. Volume 13. Stochastic Modelling

and Applied Probability. Springer Science & Business Media, 2013. 318 pages.

isbn: 978-1-4757-6592-2.

[Kem+06] Charles Kemp et al. “Learning systems of concepts with an in�nite relational

model”. In: Proceedings of the 21st National Conference on Arti�cial Intelligence and
the 18th Innovative Applications of Arti�cial Intelligence Conference, AAAI-06/IAAI-
06. 21st National Conference on Arti�cial Intelligence and the 18th Innovative

Applications of Arti�cial Intelligence Conference, AAAI-06/IAAI-06. Nov. 13,

2006, pages 381–388. url: https://collaborate.princeton.edu/
en/publications/learning-systems-of-concepts-with-
an-infinite-relational-model (visited on 03/02/2022).

[KW14] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes”. May 1,

2014. arXiv: 1312.6114 [cs, stat]. url: http://arxiv.org/
abs/1312.6114 (visited on 04/11/2022).

[Koc11] Anders Kock. “Commutative Monads as a Theory of Distributions”. Aug. 30, 2011.

arXiv: 1108.5952 [math]. url: http://arxiv.org/abs/1108.
5952 (visited on 02/07/2021).

[Kol46] Andrei Nikolaevich Kolmogoro�. Grundbegri�e der Wahrscheinlichkeitsrechnung.

Chelsea Publishing Company, 1946. 72 pages. Google Books: PDM5AAAAIAAJ.

[LRT16] Balaji Lakshminarayanan, Daniel M. Roy and Y. Teh. “Mondrian Forests for Large-

Scale Regression When Uncertainty Matters”. In: AISTATS (2016).

[LRT15] Balaji Lakshminarayanan, Daniel M. Roy and Yee Whye Teh. “Mondrian Forests:

E�cient Online Random Forests”. Feb. 16, 2015. arXiv: 1406.2673 [cs,
stat]. url: http : / / arxiv . org / abs / 1406 . 2673 (visited on

02/25/2022).

[Lan78] Saunders Mac Lane. Categories for the Working Mathematician. 2nd edition. Gradu-

ate Texts in Mathematics. New York: Springer-Verlag, 1978. isbn: 978-0-387-98403-

2. url: https://www.springer.com/gp/book/9780387984032
(visited on 06/23/2019).

[Lev06] Paul Blain Levy. “Call-by-Push-Value: Decomposing Call-by-Value and Call-by-

Name”. In: Higher-Order and Symbolic Computation 19.4 (Dec. 2006), pages 377–

414. issn: 1388-3690, 1573-0557. doi: 10/fwb7vh. url: http://link.
springer.com/10.1007/s10990-006-0480-6 (visited on 11/12/2021).

[Lor20] Fosco Loregian. “Coend Calculus”. Dec. 11, 2020. arXiv: 1501.02503 [math].

url: http://arxiv.org/abs/1501.02503 (visited on 12/29/2020).

[Lov12] László Lovász. Large Networks and Graph Limits. American Mathematical So-

ciety Colloquium Publications volume 60. Providence, Rhode Island: American

Mathematical Society, 2012. 475 pages. isbn: 978-0-8218-9085-1.

40

https://collaborate.princeton.edu/en/publications/learning-systems-of-concepts-with-an-infinite-relational-model
https://collaborate.princeton.edu/en/publications/learning-systems-of-concepts-with-an-infinite-relational-model
https://collaborate.princeton.edu/en/publications/learning-systems-of-concepts-with-an-infinite-relational-model
https://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1108.5952
http://arxiv.org/abs/1108.5952
http://arxiv.org/abs/1108.5952
http://books.google.com/books?id=PDM5AAAAIAAJ
https://arxiv.org/abs/1406.2673
https://arxiv.org/abs/1406.2673
http://arxiv.org/abs/1406.2673
https://www.springer.com/gp/book/9780387984032
https://doi.org/10/fwb7vh
http://link.springer.com/10.1007/s10990-006-0480-6
http://link.springer.com/10.1007/s10990-006-0480-6
https://arxiv.org/abs/1501.02503
http://arxiv.org/abs/1501.02503

[Mel14] Paul-André Melliès. “Local States in String Diagrams”. In: Rewriting and Typed
Lambda Calculi. Edited by Gilles Dowek. Redacted by David Hutchison et al. Vol-

ume 8560. Lecture Notes in Computer Science. Cham: Springer International Pub-

lishing, 2014, pages 334–348. isbn: 978-3-319-08917-1 978-3-319-08918-8. doi: 10.
1007/978-3-319-08918-8_23. url: http://link.springer.
com/10.1007/978-3-319-08918-8_23 (visited on 05/23/2021).

[Nij+22] Erik Nijkamp et al. “A Conversational Paradigm for Program Synthesis”. Mar. 30,

2022. arXiv:2203.13474[cs]. url:http://arxiv.org/abs/2203.
13474 (visited on 04/10/2022).

[nLa] nLab authors. Sheaf Toposes Are Equivalently the Left Exact Re�ective Subcategories
of Presheaf Toposes. url: https://ncatlab.org/nlab/show/sheaf+
toposes+are+equivalently+the+left+exact+reflective+
subcategories+of+presheaf+toposes (visited on 04/08/2022).

[Nor+15] Aditya Nori et al. “E�cient Synthesis of Probabilistic Programs”. In: Programming

Language Design and Implementation (PLDI). June 1, 2015. url:https://www.
microsoft.com/en-us/research/publication/efficient-
synthesis-of-probabilistic-programs/ (visited on 01/26/2022).

[ONe09] Ben O’Neill. “Exchangeability, Correlation, and Bayes’ E�ect”. In: International
Statistical Review 77.2 (2009), pages 241–250. issn: 1751-5823. doi: 10.1111/
j.1751-5823.2008.00059.x. url: https://onlinelibrary.
wiley.com/doi/abs/10.1111/j.1751-5823.2008.00059.x
(visited on 03/27/2022).

[OR15] Peter Orbanz and Daniel M. Roy. “Bayesian Models of Graphs, Arrays and Other

Exchangeable Random Structures”. Feb. 13, 2015. arXiv: 1312.7857 [math,
stat]. url: http : / / arxiv . org / abs / 1312 . 7857 (visited on

12/03/2021).

[Pan19] Dmitry Panchenko. Lecture Notes on Probability Theory. Dmitriy Panchenko,

Dec. 4, 2019. 320 pages. isbn: 978-1-9994190-4-2.

[PS21] Hugo Paquet and Sam Staton. “LazyPPL: Laziness and Types in Non-Parametric

Probabilistic Programs”. In: Advances in Programming Languages and Neurosym-

bolic Systems Workshop. Oct. 8, 2021. url: https://openreview.net/
forum?id=yHox9OyegeX (visited on 04/04/2022).

[Pit13] A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge

Tracts in Theoretical Computer Science 57. Cambridge ; New York: Cambridge

University Press, 2013. 276 pages. isbn: 978-1-107-01778-8.

[PP02] Gordon Plotkin and John Power. “Notions of Computation Determine Monads”.

In: Foundations of Software Science and Computation Structures. Edited by Mogens

Nielsen and U�e Engberg. Redacted by Gerhard Goos, Juris Hartmanis and Jan van

Leeuwen. Volume 2303. Lecture Notes in Computer Science. Berlin, Heidelberg:

41

https://doi.org/10.1007/978-3-319-08918-8_23
https://doi.org/10.1007/978-3-319-08918-8_23
http://link.springer.com/10.1007/978-3-319-08918-8_23
http://link.springer.com/10.1007/978-3-319-08918-8_23
https://arxiv.org/abs/2203.13474
http://arxiv.org/abs/2203.13474
http://arxiv.org/abs/2203.13474
https://ncatlab.org/nlab/show/sheaf+toposes+are+equivalently+the+left+exact+reflective+subcategories+of+presheaf+toposes
https://ncatlab.org/nlab/show/sheaf+toposes+are+equivalently+the+left+exact+reflective+subcategories+of+presheaf+toposes
https://ncatlab.org/nlab/show/sheaf+toposes+are+equivalently+the+left+exact+reflective+subcategories+of+presheaf+toposes
https://www.microsoft.com/en-us/research/publication/efficient-synthesis-of-probabilistic-programs/
https://www.microsoft.com/en-us/research/publication/efficient-synthesis-of-probabilistic-programs/
https://www.microsoft.com/en-us/research/publication/efficient-synthesis-of-probabilistic-programs/
https://doi.org/10.1111/j.1751-5823.2008.00059.x
https://doi.org/10.1111/j.1751-5823.2008.00059.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-5823.2008.00059.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-5823.2008.00059.x
https://arxiv.org/abs/1312.7857
https://arxiv.org/abs/1312.7857
http://arxiv.org/abs/1312.7857
https://openreview.net/forum?id=yHox9OyegeX
https://openreview.net/forum?id=yHox9OyegeX

Springer Berlin Heidelberg, 2002, pages 342–356. isbn: 978-3-540-43366-8 978-

3-540-45931-6. doi: 10.1007/3-540-45931-6_24. url: http://
link.springer.com/10.1007/3-540-45931-6_24 (visited on

05/24/2021).

[PT99] A. John Power and Hayo Thielecke. “Closed Freyd- and Kappa-Categories”. In:

Proceedings of the 26th International Colloquium on Automata, Languages and Pro-
gramming. ICAL ’99. Berlin, Heidelberg: Springer-Verlag, July 11, 1999, pages 625–

634. isbn: 978-3-540-66224-2.

[Rad64] R. Rado. “Universal Graphs and Universal Functions”. In: (1964). doi: 10.4064/
AA-9-4-331-340.

[Rai17] Tom Rainforth. “Automating Inference, Learning, and Design Using Probabilistic

Programming”. Oxford, United Kingdom: University of Oxford, 2017. 252 pages.

[Roy+08] D. Roy et al. “A Stochastic Programming Perspective on Nonparametric Bayes”.

In: 2008. url: https://www.semanticscholar.org/paper/A-
stochastic- programming- perspective- on- Bayes- Roy-
Mansinghka/946ed04f705a2a28539a8af1f5e9ccdedd7fabc2
(visited on 01/21/2022).

[Roy] Daniel M Roy. “Exchangeable Graphs, Conditional Independence, and Computably-

Measurable Samplers”. In: (), page 19.

[RT09] Daniel M Roy and Yee Teh. “The Mondrian Process”. In: Advances in Neural Infor-
mation Processing Systems. Volume 21. Curran Associates, Inc., 2009. url: https:
//papers.nips.cc/paper/2008/hash/fe8c15fed5f808006ce95eddb7366e35-
Abstract.html (visited on 10/16/2021).

[Sim17] Alex Simpson. “Probability Sheaves and the Giry Monad”. In: (2017). In collabora-

tion with Marc Herbstritt, 6 pages. doi: 10.4230/lipics.calco.2017.
1. url: http://drops.dagstuhl.de/opus/volltexte/2017/
8051/ (visited on 01/25/2021).

[Sta06] Sam Staton. “Name-Passing Process Calculi: Operational Models and Structural

Operational Semantics”. PhD thesis. Cambridge, UK: University of Cambridge,

2006. 245 pages.

[Sta14] Sam Staton. “Freyd Categories Are Enriched Lawvere Theories”. In: Electronic
Notes in Theoretical Computer Science 303 (Mar. 2014), pages 197–206. issn: 15710661.

doi:10.1016/j.entcs.2014.02.010.url:https://linkinghub.
elsevier.com/retrieve/pii/S157106611400036X (visited on

03/10/2021).

42

https://doi.org/10.1007/3-540-45931-6_24
http://link.springer.com/10.1007/3-540-45931-6_24
http://link.springer.com/10.1007/3-540-45931-6_24
https://doi.org/10.4064/AA-9-4-331-340
https://doi.org/10.4064/AA-9-4-331-340
https://www.semanticscholar.org/paper/A-stochastic-programming-perspective-on-Bayes-Roy-Mansinghka/946ed04f705a2a28539a8af1f5e9ccdedd7fabc2
https://www.semanticscholar.org/paper/A-stochastic-programming-perspective-on-Bayes-Roy-Mansinghka/946ed04f705a2a28539a8af1f5e9ccdedd7fabc2
https://www.semanticscholar.org/paper/A-stochastic-programming-perspective-on-Bayes-Roy-Mansinghka/946ed04f705a2a28539a8af1f5e9ccdedd7fabc2
https://papers.nips.cc/paper/2008/hash/fe8c15fed5f808006ce95eddb7366e35-Abstract.html
https://papers.nips.cc/paper/2008/hash/fe8c15fed5f808006ce95eddb7366e35-Abstract.html
https://papers.nips.cc/paper/2008/hash/fe8c15fed5f808006ce95eddb7366e35-Abstract.html
https://doi.org/10.4230/lipics.calco.2017.1
https://doi.org/10.4230/lipics.calco.2017.1
http://drops.dagstuhl.de/opus/volltexte/2017/8051/
http://drops.dagstuhl.de/opus/volltexte/2017/8051/
https://doi.org/10.1016/j.entcs.2014.02.010
https://linkinghub.elsevier.com/retrieve/pii/S157106611400036X
https://linkinghub.elsevier.com/retrieve/pii/S157106611400036X

[Sta17] Sam Staton. “Commutative Semantics for Probabilistic Programming”. In: Pro-
gramming Languages and Systems. Edited by Hongseok Yang. Volume 10201.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, pages 855–879. isbn: 978-

3-662-54433-4 978-3-662-54434-1. doi: 10.1007/978-3-662-54434-
1_32. url: http://link.springer.com/10.1007/978-3-662-
54434-1_32 (visited on 02/11/2020).

[Sta20a] Sam Staton. “Categorical Models of Probability with Symmetries”. Categorical

Probability and Statistics. June 2020. url:http://perimeterinstitute.
ca/personal/tfritz/2019/cps_workshop/slides/staton.
pdf.

[Sta20b] Sam Staton. “Probabilistic Programs as Measures”. In: Foundations of Probabilistic
Programming. Edited by Alexandra Silva, Gilles Barthe and Joost-Pieter Katoen.

Cambridge: Cambridge University Press, 2020, pages 43–74. isbn: 978-1-108-

48851-8. doi: 10.1017/9781108770750.003. url: https://www.
cambridge.org/core/books/foundations-of-probabilistic-
programming/probabilistic-programs-as-measures/B136E6A9577C71C1DA141257272D2AD9
(visited on 04/03/2022).

[Sta21a] Sam Staton. “Some Formal Structures in Probability”. In: FSCD. 2021, page 4.

url: https://drops.dagstuhl.de/opus/volltexte/2021/
14242/pdf/LIPIcs-FSCD-2021-4.pdf.

[Sta21b] Sam Staton. “Some Formal Structures in Probability”. 2021. url: http://www.
cs.ox.ac.uk/people/samuel.staton/2021fscd.pdf.

[Sta22] Sam Staton. “Abstract Types in Probabilistic Programming”. LAFI Workshop

(POPL). 2022. url: https://popl22.sigplan.org/details/
lafi-2022-papers/6/Abstract-types-in-probabilistic-
programming (visited on 04/05/2022).

[Sta+17] Sam Staton et al. “Exchangeable Random Processes and Data Abstraction”. In:

PPS Workshop. Paris, France, 2017, page 4. url: http://www.cs.ox.ac.
uk/people/hongseok.yang/paper/pps17a.pdf.

[Sta+18] Sam Staton et al. “The Beta-Bernoulli Process and Algebraic E�ects”. In: (2018).

In collaboration with Michael Wagner, 15 pages. doi: 10.4230/lipics.
icalp.2018.141. url: http://drops.dagstuhl.de/opus/
volltexte/2018/9145/ (visited on 11/13/2020).

[Sta+] Sam Staton et al. LazyPPL. url: https://lazyppl.bitbucket.io/
(visited on 04/04/2022).

[SS21] Dario Stein and Sam Staton. “Compositional Semantics for Probabilistic Programs

with Exact Conditioning”. Jan. 27, 2021. arXiv: 2101.11351 [cs, math].

url: http://arxiv.org/abs/2101.11351 (visited on 02/07/2021).

[Ste21] Dario Maximilian Stein. “Structural Foundations for Probabilistic Programming

Languages”. University of Oxford, 2021. 221 pages.

43

https://doi.org/10.1007/978-3-662-54434-1_32
https://doi.org/10.1007/978-3-662-54434-1_32
http://link.springer.com/10.1007/978-3-662-54434-1_32
http://link.springer.com/10.1007/978-3-662-54434-1_32
http://perimeterinstitute.ca/personal/tfritz/2019/cps_workshop/slides/staton.pdf
http://perimeterinstitute.ca/personal/tfritz/2019/cps_workshop/slides/staton.pdf
http://perimeterinstitute.ca/personal/tfritz/2019/cps_workshop/slides/staton.pdf
https://doi.org/10.1017/9781108770750.003
https://www.cambridge.org/core/books/foundations-of-probabilistic-programming/probabilistic-programs-as-measures/B136E6A9577C71C1DA141257272D2AD9
https://www.cambridge.org/core/books/foundations-of-probabilistic-programming/probabilistic-programs-as-measures/B136E6A9577C71C1DA141257272D2AD9
https://www.cambridge.org/core/books/foundations-of-probabilistic-programming/probabilistic-programs-as-measures/B136E6A9577C71C1DA141257272D2AD9
https://drops.dagstuhl.de/opus/volltexte/2021/14242/pdf/LIPIcs-FSCD-2021-4.pdf
https://drops.dagstuhl.de/opus/volltexte/2021/14242/pdf/LIPIcs-FSCD-2021-4.pdf
http://www.cs.ox.ac.uk/people/samuel.staton/2021fscd.pdf
http://www.cs.ox.ac.uk/people/samuel.staton/2021fscd.pdf
https://popl22.sigplan.org/details/lafi-2022-papers/6/Abstract-types-in-probabilistic-programming
https://popl22.sigplan.org/details/lafi-2022-papers/6/Abstract-types-in-probabilistic-programming
https://popl22.sigplan.org/details/lafi-2022-papers/6/Abstract-types-in-probabilistic-programming
http://www.cs.ox.ac.uk/people/hongseok.yang/paper/pps17a.pdf
http://www.cs.ox.ac.uk/people/hongseok.yang/paper/pps17a.pdf
https://doi.org/10.4230/lipics.icalp.2018.141
https://doi.org/10.4230/lipics.icalp.2018.141
http://drops.dagstuhl.de/opus/volltexte/2018/9145/
http://drops.dagstuhl.de/opus/volltexte/2018/9145/
https://lazyppl.bitbucket.io/
https://arxiv.org/abs/2101.11351
http://arxiv.org/abs/2101.11351

[Sto49] M. H. Stone. “Postulates for the Barycentric Calculus”. In: (1949). doi: 10.1007/
BF02413910.

[Tij07] H. C. Tijms. Understanding Probability: Chance Rules in Everyday Life. 2nd ed.

Cambridge: Cambridge University Press, 2007. 442 pages. isbn: 978-0-521-70172-3.

[Tol+16] David Tolpin et al. “Design and Implementation of Probabilistic Programming

Language Anglican”. In: Proceedings of the 28th Symposium on the Implementation
and Application of Functional Programming Languages - IFL 2016. The 28th Sym-

posium. Leuven, Belgium: ACM Press, 2016, pages 1–12. isbn: 978-1-4503-4767-9.

doi: 10.1145/3064899.3064910. url: http://dl.acm.org/
citation.cfm?doid=3064899.3064910 (visited on 09/14/2021).

[Tra20] Dustin Tran. “Probabilistic Programming for Deep Learning”. Columbia Univer-

sity, 2020. doi: 10.7916/d8-95c9-sj96. url: https://doi.org/
10.7916/d8-95c9-sj96 (visited on 08/17/2021).

[Tra+17] Dustin Tran et al. “Deep Probabilistic Programming”. Mar. 7, 2017. arXiv: 1701.
03757 [cs, stat]. url: http://arxiv.org/abs/1701.03757
(visited on 04/11/2022).

[vdMee+21] Jan-Willem van de Meent et al. An Introduction to Probabilistic Programming.

Oct. 19, 2021. arXiv: 1809.10756. url: http://arxiv.org/abs/
1809.10756 (visited on 12/18/2021).

[Vas+17] Ashish Vaswani et al. “Attention Is All You Need”. Dec. 5, 2017. arXiv: 1706.
03762 [cs]. url: http://arxiv.org/abs/1706.03762 (visited

on 04/11/2022).

[Woo+09] Frank Wood et al. “A Stochastic Memoizer for Sequence Data”. In: Proceedings
of the 26th Annual International Conference on Machine Learning - ICML ’09.

The 26th Annual International Conference. Montreal, Quebec, Canada: ACM

Press, 2009, pages 1–8. isbn: 978-1-60558-516-1. doi: 10/fg8z4q. url: http:
//portal.acm.org/citation.cfm?doid=1553374.1553518
(visited on 01/21/2022).

44

https://doi.org/10.1007/BF02413910
https://doi.org/10.1007/BF02413910
https://doi.org/10.1145/3064899.3064910
http://dl.acm.org/citation.cfm?doid=3064899.3064910
http://dl.acm.org/citation.cfm?doid=3064899.3064910
https://doi.org/10.7916/d8-95c9-sj96
https://doi.org/10.7916/d8-95c9-sj96
https://doi.org/10.7916/d8-95c9-sj96
https://arxiv.org/abs/1701.03757
https://arxiv.org/abs/1701.03757
http://arxiv.org/abs/1701.03757
https://arxiv.org/abs/1809.10756
http://arxiv.org/abs/1809.10756
http://arxiv.org/abs/1809.10756
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10/fg8z4q
http://portal.acm.org/citation.cfm?doid=1553374.1553518
http://portal.acm.org/citation.cfm?doid=1553374.1553518

	Introduction
	Exchangeability and Representation theorems
	de Finetti's Theorem
	Synthetic versions of de Finetti's Theorem

	Exchangeable modules in probabilistic programming
	de Finetti on a Boolean exchangeable module
	Aldous-Hoover theorem
	Abstract exchangeable modules

	Categorical models of probabilistic generative models
	Rado topos and toposic Galois theory
	Toposic Galois approach

	Bipartite random graph topos

	Stochastic Memoization
	Probabilistic local state monad
	Categorical semantics

	Probabilistic programming and applications
	Relational modeling and Mondrian process
	Relational modeling in the 2-dimensional case

	Stanford substitution cipher algorithm

	Further directions and Conclusion

