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Probabilistic programming interfaces for random graphs:
Markov categories, graphons, and nominal sets

ANONYMOUS AUTHOR(S)

We study semantic models of probabilistic programming languages over graphs, and establish a connection to

graphons from graph theory and combinatorics. We show that every well-behaved equational theory for our

graph probabilistic programming language corresponds to a graphon, and conversely, every graphon arises in

this way.

We provide three constructions for showing that every graphon arises from an equational theory. The first is

an abstract construction, using Markov categories and monoidal indeterminates. The second and third are more

concrete. The second is in terms of traditional measure theoretic probability, which covers ‘black-and-white’

graphons. The third is in terms of probability monads on the nominal sets of Gabbay and Pitts. Specifically,

we use a variation of nominal sets induced by the theory of graphs, which covers Erdős-Rényi graphons. In

this way, we build new models of graph probabilistic programming from graphons.

1 INTRODUCTION
This paper is about the semantic structures underlying probabilistic programming with random

graphs. Random graphs have applications in statistical modelling across biology, chemistry, epi-

demiology, and so on, as well as theoretical interest in graph theory and combinatorics (e.g. [14]).

Probabilistic programming, i.e. programming for statistical modelling [74], is useful for building

the statistical models for the applications. Moreover, as we show (Theorem 23 and Corollary 26),

the semantic aspects of programming languages for random graphs correspond to graphons [56], a

core structure in graph theory and combinatorics.

To set the scene more precisely, we recall the setting of probabilistic programming with real-

valued distributions, and contrast it with the setting with graphs. Many probabilistic programming

languages provide a type of real numbers (real) and distributions such as the normal distribution

normal : real ∗ real→ real

together with arithmetic operations such as

(+) : real ∗ real→ real.

Even if we encounter an unfamiliar distribution over real in a library, we have a rough idea of how

to explain what it could be, in terms of probability densities and measures.

In this paper, we consider the setting of probabilistic programming with graphs, where the

probabilistic programming language or library provides a type vertex and some distribution

new : unit→ vertex (1)

together with a test

edge : vertex ∗ vertex→ bool. (2)

Our goal is to analyze the interface (vertex, new, edge) for graphs semantically, and answer, for

instance, what they could be and what they could do. We give one example analysis in Section 1.1

first, and the general one later in Theorem 23 and Corollary 26, which says that to give an im-

plementation of (vertex, new, edge), satisfying the laws of probabilistic programming, is to give a

graphon. In doing so, we connect the theory of probabilistic programming with graph theory and

combinatorics.
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2 Anon.

Fig. 1. Two samples of random graphs on the unit sphere (for 𝜃 = 𝜋/3, 𝜋/6).

1.1 Example of an implementation of a random graph
To illustrate the interface (vertex, new, edge) of (1)–(2), we consider for illustration a random graph

where the vertices are points on the surface of the unit sphere, chosen uniformly at random, and

where there is an edge between two vertices if the angle between them is less than some fixed 𝜃 .

See Figure 1 for samples from such a random graph, where 𝜃
def

= 𝜋/3, 𝜋/6. This random graph

might be used, for example, to model the connections between people on the globe. Although we

will not study inference in this paper, we note that one next step for a statistician might involve

inferring the most likely 𝜃 given particular data.

We can regard this example as an implementation of the interface (vertex, new, edge) as follows:
we implement vertex as the surface of the sphere (e.g. implemented as pairs of polar/azimuth

angles).

• new() : vertex, which randomly picks a new vertex as a point on the sphere uniformly at

random. Figure 1 shows the progress after calling new() 15 times.

• edge : vertex ∗ vertex→ bool, which checks whether there is an edge between two vertices;

this amounts to checking whether the angle between two points is less than 𝜃 .

For a simple example, we can write a program over the interface to calculate the probability of

three random vertices forming a triangle: the program

let𝑎 = new() in let𝑏 = new() in let 𝑐 = new() in
edge(𝑎, 𝑏) & edge(𝑏, 𝑐) & edge(𝑎, 𝑐) : bool (3)

randomly returns true or false; the probability of true is the probability of a triangle.

This implementation using the sphere is only one way to implement (vertex, new, edge). There
are implementations using higher-dimensional spheres, or other geometric objects. We can also

consider random equivalence relations as graphs, i.e. disjoint unions of complete graphs, or random

bipartite graphs, which are triangle-free. We can consider the Erdős–Rényi random graph, where the

chance of an edge between two vertices is independent of the other edges, and has a fixed probability.

These are all different implementations of the same abstract interface, (vertex, new, edge), and
programs such as (3) make sense for all of them. The point of this paper is to characterize all these

implementations, as graphons.

1.2 Implementations regarded as equational theories
The key method of this paper is to treat implementations of the interface (vertex, new, edge) ex-
tensionally, as equational theories. That is, rather than looking at specific implementation details,

we look at the equations between programs that a user of the implementation would rely on.

(This is analogous to the idea in model theory of studying first-order theories rather than specific

models; similar ideas arise in the algebraic theory of computational effects [64].) For example, if an



99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Probabilistic programming interfaces for random graphs 3

implementation always provides a bipartite random graph, we have the equation

Program (3) ≡ false between programs,

because a triangle is never generated. This equation does not hold in the example of Figure 1, since

triangles are possible.

We focus on a class of equational theories that are well behaved, as follows. First, we suppose

that they contain basic laws for probabilistic programming (eqns. (5) – (9), §2.2). This basic structure

already appears broadly in different guises, including in Moggi’s monadic metalanguage [61], in

linear logic [23], and in synthetic probability theory [28]. Second, we suppose that the equational

theories are equipped with a ‘Bernoulli base’, which means that although we do not specify an

implementation for the type vertex, each closed program of type bool is equated with some ordinary

Bernoulli distribution, in such a way as to satisfy the classical laws of traditional finite probability

theory (§ 2.4). Finally, we suppose that the edge relation is symmetric (the graphs are undirected)

and that it doesn’t change when the same question is asked multiple times (‘deterministic’), e.g.

let𝑎 = new() in let𝑏 = new() in edge(𝑎, 𝑏) &¬edge(𝑎, 𝑏)
≡ false. (4)

A graphon is a symmetric measurable function [0, 1]2 → [0, 1]. We show that every equational

theory for the interface (vertex, new, edge) gives rise to a graphon (Theorem 23), and conversely

that every graphon arises in this way (Corollary 26).

We emphasize that this abstract treatment of implementations, in terms of equational theories,

is very open-ended, and permits a diverse range of implementation methods. Indeed, we show in

Section 5 that any implementation using traditional measure-theoretic methods will only produce

black-and-white graphons, so this abstract treatment is crucial.

1.3 From equational theories to graphons
In Section 3, we show how an equational theory over programs in the interface (vertex, new, edge)
gives rise to a graphon. The key first step is that graphons (modulo equivalence) can be character-

ized in terms of sequences of finite random graphs that satisfy three conditions: exchangeability,

consistency, and locality.

To define a graphon, we show how to define programs that describe finite random graphs, by using

new and edge to build boolean-valued 𝑛 ×𝑛 adjacency matrices, for all 𝑛 (shown in (16)). Assuming

that the equational theory of programs is Bernoulli-based, these programs can be interpreted as

probability distributions on the finite spaces of adjacency matrices which, we show, are finite

random graphs.

It remains to show that the induced sequence of random graphs satisfies the three conditions

for graphons (exchangeability, consistency, and locality). These can be formulated as equational

properties, and so they can be verified by using the equational reasoning in the equational theory.

This is Theorem 23. For example, exchangeability is shown by using the fact that in any good

theory, we have commutativity of let (7), and hence we can permute the order in which vertices

are instantiated without changing the distributions.

1.4 From graphons to equational theories
We also show the converse: every graphon arises from a good equational theory for the interface

(vertex, new, edge). We look at this from three angles: first, we prove this in the general case using

an abstract method, and then, we use concrete methods for two special cases.

Fixing a graphon, we build an equational theory by following a categorical viewpoint. A good

equational theory for probabilisitic programming amounts to a ‘distributive Markov category’,
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4 Anon.

which is a monoidal category with coproducts that is well-suited to probability (§2.2 and [28]). The

idea that distributive categories are a good way to analyze abstract interfaces goes back at least

to [75], which used distributive categories to study interfaces for stacks and storage. We can thus

use now-standard abstract methods for building monoidal and distributive categories to build an

equational theory for the programming language.

We proceed in two steps. We first use methods such as [34, 36] to build an abstract distributive

Markov category that supports the interface (vertex, new, edge) in a generic way. This equational

theory is generic and not Bernoulli-based: although it satisfies the equational laws of probabilistic

programming, there is no given connection to traditional probability. The second step is to show

that (a) it is possible to quotient this generic category to get Bernoulli-based equational theories;

(b) the choices of quotient are actually in bijective correspondence with graphons. Thus, we can

build an equational theory from which any given graphon arises, via (16): this is Corollary 26.

Although this is a general method, it is an abstract method involving quotient constructions.

The ideal form of denotational semantics is to explain what programs are by regarding them as

functions between certain kind of spaces. Although Corollary 26 demonstrates that every graphon

arises from an equational theory, the type (vertex) is interpreted as an object of an abstract category,
and programs are equivalence classes of abstract morphisms. In the remainder of the paper, we

give two situations where we can interpret (vertex) as a genuine concrete space, and programs

are functions or distributions on spaces. Such an interpretation immediately yields an equational

theory, where two programs are equal if they have the same interpretation.

• Section 5: For ‘black-and-white graphons’, we present measure-theoretic models of the

interface, based on a standardmeasure-theoretic interpretation of probabilistic programming

(e.g. [54]). We interpret (vertex) as a measurable space, and (new) as a probability measure

on it, and (edge) in terms of a measurable predicate. Then, the composition of programs is

defined in terms of probability kernels and Lebesgue integration. This kind of model exactly

captures the black-and-white graphons (Prop. 29).

• Section 6: For ‘Erdős–Rényi’ graphons, which are constantly gray, and not black-and-white,

we present a model based on Rado-nominal sets (§6.1). These are a variant of nominal sets

([30, 63]) where the atoms are vertices of the Rado graph (following [13]). We consider a new

notion of ‘internal probability measure’ in this setting, and use this to give a compositional

semantics that gives rise to the Erdős–Rényi graphons (Corollary 45).

Together, these more concrete sections then provide further intuition for the correspondence

between equational theories and graphons.

Summary and context. As we have discussed, equational theories for the programming interface

(§1.1) give rise to graphons (§1.3) and every graphon arises in this way (§1.4).

These results open up new ways to study random graphs, by using programming semantics. On

the other hand, several practical probabilistic programming languages do support random graphs

or non-parametric features, and so our results here put those abstractions on a solid theoretical

foundation (see §7(b)).

2 PROGRAMMING INTERFACES FOR RANDOM GRAPHS: EQUATIONAL THEORIES
AND MARKOV CATEGORIES

In Section 1.1, we considered probabilistic programming over a graph interface. To make this

formal, we now recall syntax, types, and equational reasoning for simple probabilistic programming

languages. We begin with a general syntax (§2.1), which can accommodate various interfaces in

the form of type and term constants, including the interface for graphs (Ex. 1(3)).
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Probabilistic programming interfaces for random graphs 5

We study different instantiations of the probabilistic programming language in terms of the

equational theories that they satisfy. We consider two equivalent ways of understanding equational

theories: as distributive Markov categories (§2.2) and in terms of affine monads (§2.3). Markov

categories are a categorical formulation of probability theory (e.g. [28]), and affine monads arise in

the categorical analysis of probability (e.g. [29, 40, 53]) as well as in the semantics for probabilistic

programming (e.g. [10, 21, 22]). We make a connection with traditional probability via the notion

of Bernoulli base (§2.4).

Much of this section will be unsurprising to experts: the main purpose is to collect definitions

and results. The definition of distributive Markov category appears to be novel, and so we go over

that definition and correspondence with monads (Propositions 8 and 13). In Section 2.5, we give a

construction for quotienting a distributive Markov category, which we will need in Section 4. We

include the result in the section because it may be of independent interest.

2.1 Syntax for a generic probabilistic programming language
Our generic probabilistic programming language is, very roughly, an idealized, typed fragment

of a typical language like Church [33]. We start with a simple programming language (following

[23, 69, 72] but also [61]) with at least the following product and sum type constructors:

𝐴,𝐴1, 𝐴2, 𝐵 ::= unit | 0 |𝐴1 ∗𝐴2 |𝐴1 +𝐴2 | . . .

and terms, including the typical constructors and destructors but also explicit sequencing (let in)

𝑡, 𝑡1, 𝑡2, 𝑢 ::= 𝑥 | () | (𝑡1, 𝑡2) | 𝜋1 𝑡 | 𝜋2 𝑡 | in1 𝑡 | in2 𝑡
| let𝑥 = 𝑡1 in 𝑡2 | case 𝑡 of {} | case 𝑡 of {in1 (𝑥1) ⇒ 𝑢1; in2 (𝑥2) ⇒ 𝑢2} | . . .

We consider the standard typing rules (where 𝑖 ∈ {1, 2}):

Γ, 𝑥 : 𝐴, Γ′ ⊢ 𝑥 : 𝐴 Γ ⊢ () : unit
Γ ⊢ 𝑡1 : 𝐴1 Γ ⊢ 𝑡2 : 𝐴2

Γ ⊢ (𝑡1, 𝑡2) : 𝐴1 ∗𝐴2

Γ ⊢ 𝑡 : 𝐴1 ∗𝐴2

Γ ⊢ 𝜋𝑖 𝑡 : 𝐴𝑖

Γ ⊢ 𝑡 : 𝐴𝑖

Γ ⊢ in𝑖 𝑡 : 𝐴1 +𝐴2

Γ ⊢ 𝑡 : 𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝑢 : 𝐵

Γ ⊢ let𝑥 = 𝑡 in𝑢 : 𝐵

Γ ⊢ 𝑡 : 0
Γ ⊢ case 𝑡 of {} : 𝐵

Γ ⊢ 𝑡 : 𝐴1 +𝐴2

(
Γ, 𝑥𝑖 : 𝐴𝑖 ⊢ 𝑢𝑖 : 𝐵

)
𝑖∈{1,2}

Γ ⊢ case 𝑡 of {in1 (𝑥1) ⇒ 𝑢1; in2 (𝑥2) ⇒ 𝑢2} : 𝐵

(Here, a context Γ is a sequence of assignments of types 𝐴 to variables 𝑥 .)

In what follows, we use shorthands such as bool = unit + unit, and if-then-else instead of case.

This language is intended to be a generic probabilistic programming language. Different proba-

bilistic programming languages support distributions over different kinds of structures. Thus, our

language is extended according to an ‘interface’ by specifying type constants and term constants.

For each term constant 𝑓 : 𝐴→ 𝐵, we include a new typing rule,

Γ ⊢ 𝑡 : 𝐴
Γ ⊢ 𝑓 (𝑡) : 𝐵

Example 1. We consider the following examples of interfaces.

(1) For probabilistic programming over finite domains, we may have term constants such as
bernoulli0.5 : unit→ bool, intuitively a fair coin toss.

(2) For probabilistic programming over real numbers, we may have a type constant real and term
constants such as normal : real ∗ real→ real, intuitively a parameterized normal distribution,
and arithmetic operations such as (+) : real ∗ real→ real.

(3) The main interface of this paper is for random graphs: this has a type constant vertex and term
constants new : unit→ vertex and edge : vertex ∗ vertex→ bool.
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6 Anon.

2.2 Equational theories and Markov categories
Section 2.1 introduced a syntax for various probabilistic programming interfaces. The idea is that

this is a generic language which applies to different interfaces with different distributions that are

implemented in different ways. Rather than considering various ad hoc operational semantics, we

study the instances of interfaces by the program equations that they support.

Regardless of the specifics of a particular implementation, we expect basic equational reasoning

principles for probabilistic programming to hold, such as the following laws:

(let𝑦=(let𝑥=𝑡 in𝑢) in 𝑡 ′) ≡ (let𝑥=𝑡 in let𝑦=𝑢 in 𝑡 ′) (where 𝑥 ∉ fv(𝑡 ′)) (5)

(𝑡,𝑢) ≡ (let𝑥 = 𝑡 in let𝑦 = 𝑢 in (𝑥,𝑦)) (6)

(let𝑥=𝑡 in let𝑥 ′=𝑡 ′ in𝑢) ≡ (let𝑥 ′=𝑡 ′ in let𝑥=𝑡 in𝑢) (where 𝑥 ∉ fv(𝑡 ′) and 𝑥 ′ ∉ fv(𝑡)) (7)

(let𝑥 = 𝑡 ′ in 𝑡) ≡ 𝑡 (where 𝑥 ∉ fv(𝑡)) (8)

The following law does not always hold, but does hold when 𝑣 is ‘deterministic’.

(let𝑥 = 𝑣 in 𝑡) ≡ 𝑡 [𝑣/𝑥] (9)

Equations (7) and (8) say that parts of programs can be re-ordered and discarded, as long as the

dataflow is respected. This is a feature of probabilistic programming. For example, coins do not

remember the order nor howmany times they have been tossed. But these equations would typically

not hold in a language with state.

The cleanest way to study equational theories of programs is via a categorical semantics, and for

probabilistic programming, Markov categories have arisen as a canonical setting.

Definition 2. A Markov category ([28]) is a symmetric monoidal category (C, ⊗, 𝐼 ) in which

• the monoidal unit 𝐼 is a terminal object (𝐼 = 1), and
• every object 𝑋 is equipped with a comonoid Δ𝑋 : 𝑋 → 𝑋 ⊗ 𝑋 , compatible with the tensor
product (Δ𝑋⊗𝑌 = (𝑋 ⊗ swp ⊗ 𝑌 ) · (Δ𝑋 ⊗ Δ𝑌 )).

A morphism 𝑓 : 𝑋 → 𝑌 in a Markov category is deterministic if it commutes with the comonoids:
(𝑓 ⊗ 𝑓 ) · Δ𝑋 = Δ𝑌 · 𝑓 .
A distributive symmetric monoidal category (e.g. [42, 75]) is a symmetric monoidal category

equipped with chosen finite coproducts such that the canonical maps𝑋 ⊗𝑍 +𝑌 ⊗𝑍 → (𝑋 +𝑌 ) ⊗𝑍 and
0→ 0 ⊗ 𝑍 are isomorphisms. A distributive Markov category is a Markov category whose underlying
monoidal category is also distributive and whose chosen coproduct injections 𝑋 → 𝑋 + 𝑌 ← 𝑌 are
deterministic. A distributive category [17, 18] is a distributive Markov category where all morphisms
are deterministic.
A (strict) distributive Markov functor is a functor 𝐹 : C → D between distributive Markov

categories which strictly preserves the chosen symmetric monoidal, coproduct, and comonoid structures.

In this paper we mainly focus on functors between distributive Markov categories that strictly

preserve the relevant structure, so we elide ‘strict’. (Nonetheless, non-strict functors are important,

e.g. [28, §10.2] and Prop. 13.)

We interpret the language of Section 2.1 in a distributive Markov category C by interpreting

types 𝐴 and type contexts Γ as objects J𝐴K and JΓK, and typed terms Γ ⊢ 𝑡 : 𝐴 as morphisms

JΓK→ J𝐴K. (See e.g. [62] for a general discussion of terms as morphisms.)

In more detail, to give such an interpretation, type constants must first be given chosen interpre-

tations as objects of C. We can then interpret types and contexts using the monoidal and coproduct

structure of C. Following this, term constants 𝑓 : 𝐴 → 𝐵 must be given chosen interpretations

as morphisms J𝐴K → J𝐵K in C. The interpretation of other terms is made by induction on the
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structure of typing derivations in a standard manner, using the structure of the distributive Markov

category (e.g. [11], [72, §7.2]). For example,

JΓ, 𝑥 : 𝐴, Γ′ ⊢ 𝑥 : 𝐴K = JΓ, 𝑥 : 𝐴, Γ′K � JΓK ⊗ J𝐴K ⊗ JΓ′K
!⊗J𝐴K⊗!
−−−−−−→ 1 ⊗ J𝐴K ⊗ 1 � J𝐴K

Jlet𝑥 = 𝑡 in𝑢K = JΓK
ΔJΓK−−−→ JΓK ⊗ JΓK

JΓK⊗J𝑡K
−−−−−−→ JΓK ⊗ J𝐴K = JΓ, 𝑥 : 𝐴K

J𝑢K
−−→ J𝐵K

JΓ ⊢ case 𝑡 of {in1 (𝑥1) ⇒ 𝑢1; in2 (𝑥2) ⇒ 𝑢2} : 𝐵K =

JΓK
ΔJΓK−−−→ JΓK ⊗ JΓK

JΓK⊗J𝑡K
−−−−−−→ JΓK ⊗ J𝐴1 +𝐴2K � JΓ, 𝑥 : 𝐴1K + JΓ, 𝑥 : 𝐴2K

⟨J𝑢1K,J𝑢2K⟩−−−−−−−−→ J𝐵K

An interpretation in a Markov category induces an equational theory between programs: let

Γ ⊢ 𝑡 = 𝑢 : 𝐴 if J𝑡K = J𝑢K.

Proposition 3 (e.g. [72], §7.1). The equational theory induced by the interpretation in a distribu-
tive Markov category, with given interpretations of type and term constants, always includes the
equations (5)– (8), and also (9) whenever J𝑣K is a deterministic morphism.

Example 4. The category FinSet of finite sets is a distributive Markov category. As in any category
with products, each object has a unique comonoid structure, and all morphisms are deterministic. This
is a good Markov category for interpreting the plain language with no type or term constants. For
example, JboolK is a set with two elements.

Example 5. The category FinStoch has natural numbers as objects and the morphisms are stochastic
matrices. In more detail, a morphism𝑚 → 𝑛 is a matrix in (R≥0)𝑚×𝑛 such that the rows sum to 1.
Composition is by matrix multiplication. The monoidal structure is given on objects by multiplication
of numbers, and on morphisms by Kronecker product of matrices. By choosing an enumeration of
each finite set, we get a functor FinSet → FinStoch that converts a function to the corresponding
(0/1)-valued matrix. So every object of FinStoch can be regarded with the comonoid structure from
FinSet. The deterministic morphisms in FinStoch are exactly the morphisms from FinSet.

This is a good Markov category for interpreting the language with Bernoulli distributions (Ex. 1(1)).
We interpret the fair coin as the 1 × 2 matrix (0.5, 0.5).
We can also give some interpretations for the graph interface (Ex. 1(3)) in FinStoch. For instance,

consider random graphs made of two disjoint complete subgraphs, as is typical in a clustering model.
We can interpret this by putting JvertexK = 2, JedgeK = ( 1 0 0 1

0 1 1 0
)⊤, and JnewK = (0.5, 0.5).

We look at other examples of distributive Markov categories and interpretations of these inter-

faces in Sections 2.3.2 and 2.3.3, and then in Sections 4–6.

2.3 Equational theories and affine monads
2.3.1 Distributive Markov categories from affine monads. One way to generate equational theories

via Markov categories is by considering certain kinds of monads, following Moggi [61].

Definition 6. A strong monad on a category A with finite products is given by
• for each object 𝑋 , an object 𝑇 (𝑋 );
• for each object 𝑋 , a morphism 𝜂𝑋 : 𝑋 → 𝑇 (𝑋 );
• for objects 𝑍,𝑋,𝑌 , a family of functions natural in 𝑍

(>>=) : A(𝑍,𝑇 (𝑋 )) × A(𝑍 × 𝑋,𝑇 (𝑌 )) → A(𝑍,𝑇 (𝑌 ))
such that >>= is associative with unit 𝜂.

(There are various different formulations of this structure. When A is cartesian closed, as in

Defs. 9 and 41, then the bind (>>=) is represented by a morphism (>>=) : 𝑇 (𝑋 ) × (𝑋 ⇒ 𝑇 (𝑌 )) → 𝑇 (𝑌 ),
by the Yoneda lemma.)
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Definition 7 ([38, 52, 55]). Given a strong monad𝑇 , we say that two morphisms 𝑓 : 𝑋1 → 𝑇 (𝑋2),
𝑔 : 𝑋1 → 𝑇 (𝑋3) commute if

𝑓 >>= ((𝑔 ◦ 𝜋1) >>= (𝜂 ◦ ⟨𝜋2 ◦ 𝜋1, 𝜋2⟩)) = 𝑔 >>= ((𝑓 ◦ 𝜋1) >>= (𝜂 ◦ ⟨𝜋2, 𝜋2 ◦ 𝜋1⟩)) : 𝑋1 → 𝑇 (𝑋2 × 𝑋3).
A strong monad is commutative if all morphisms commute. It is affine if𝑇 (1) → 1 is an isomorphism.

The Kleisli category Kl(𝑇 ) of a strong monad 𝑇 has the same objects as A, but the morphisms

are different: Kl(𝑇 ) (𝐴, 𝐵) = A(𝐴,𝑇 (𝐵)). There is a functor 𝐽 : A→ Kl(𝑇 ), given on morphisms by

composing with 𝜂 (e.g. [58, §VI.5], [61]).

Proposition 8. Let 𝑇 be a strong monad on a category A. If 𝑇 is commutative and affine and A
has finite products, then the Kleisli category Kl(𝑇 ) has a canonical structure of a Markov category.
Furthermore, if A is distributive, then Kl(𝑇 ) can be regarded as a distributive Markov category.

Proof notes. The Markov structure follows [28, §3]. Since 𝑇 is commutative, the product

structure of A extends to a symmetric monoidal structure on Kl(𝑇 ). Since 𝑇 (1) = 1, the monoidal

unit (1) is terminal in Kl(𝑇 ). Every object in A has a comonoid structure, and this is extended to

Kl(𝑇 ) via 𝐽 . The morphisms in the image of 𝐽 are deterministic, although this need not be a full

characterization of determinism.

For the distributive structure, recall that 𝐽 preserves coproducts and indeed it has a right adjoint.

Hence, the coproduct injections will be deterministic. □

We can thus interpret the language of Section 2.1 using any strong monad, interpreting the

types 𝐴 as objects J𝐴K of A, and a term Γ ⊢ 𝑡 : 𝐴 as a morphism J𝑡K : JΓK → 𝑇 (J𝐴K). This
interpretation matches Moggi’s interpretation of the language of Section 2.1 in a strong monad.

2.3.2 Example affine monad: distribution monad.

Definition 9 (e.g. [39], §4.1). The distribution monad D on Set is defined as follows:
• On objects: each set𝑋 is mapped to the set of all finitely-supported discrete probability measures
on 𝑋 , that is, all functions 𝑝 : 𝑋 → R that are non-zero for only finitely many elements and
satisfy

∑
𝑥∈𝑋 𝑝 (𝑥) = 1.

• The unit 𝜂𝑋 : 𝑋 → D(𝑋 ) maps 𝑥 ∈ 𝑋 to the indicator function 𝜆𝑦. [𝑦 = 𝑥], i.e. the Dirac
distribution 𝛿𝑥 .
• The bind function (>>=) is defined as follows:

(𝑓 >>= 𝑔) (𝑧) (𝑦) = ∑
𝑥∈𝑋 𝑓 (𝑧) (𝑥) · 𝑔(𝑧, 𝑥) (𝑦)

By the standard construction for strong monads, each morphism 𝑓 : 𝑋 → 𝑌 gets mapped to

D 𝑓 : D𝑋 → D𝑌 , that is, the pushforward in this case: D 𝑓 (𝑝) (𝑦) = ∑
𝑥∈ 𝑓 −1 (𝑦) 𝑝 (𝑥).

Consider the language with no type constants, and just the term constant bernoulli0.5 (Ex. 1(1)).
This can be interpreted in the distribution monad. Since every type 𝐴 is interpreted as a finite

set J𝐴K, and every context Γ as a finite set JΓK, a term Γ ⊢ 𝑡 : 𝐴 is interpreted as a function

JΓK→ DJ𝐴K. To give a Kleisli morphism between finite sets is to give a stochastic matrix, and so

the induced equational theory is the same as the interpretation in FinStoch (Ex. 5).

2.3.3 Example affine monad: Giry monad. We recall some rudiments of measure-theoretic proba-

bility.

Definition 10. A 𝜎-algebra on a set is a non-empty collection of subsets that contains the empty
set and is closed under countable unions and complements. A measurable space is a pair (𝑋, Σ) of a
set and a 𝜎-algebra on it. A measurable function (𝑋, Σ𝑋 ) → (𝑌, Σ𝑌 ) is a function 𝑓 : 𝑋 → 𝑌 such
that 𝑓 -1 (𝑈 ) ∈ Σ𝑋 for all𝑈 ∈ Σ𝑌 .
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A probability measure on a measurable space (𝑋, Σ) is a function 𝜇 : Σ → [0, 1] that has total
mass 1 (𝜇 (𝑋 ) = 1) and that is 𝜎-additive: 𝜇 (⊎∞𝑖=1𝑈𝑖 ) =

∑∞
𝑖=1 𝜇 (𝑈𝑖 ) for any sequence of disjoint𝑈𝑖 .

Examples of measurable spaces include: the finite sets𝑋 equipped with their powerset 𝜎-algebras;

the unit interval [0, 1] equipped with its Borel 𝜎-algebra, which is the least 𝜎-algebra containing

the open sets. Examples of probability measures include: discrete probability measures (Def. 9); the

uniform measure on [0, 1]; the Dirac distribution 𝛿𝑥 (𝑈 ) = [𝑥 ∈ 𝑈 ].
The product of two measurable spaces (𝑋, Σ𝑋 ) × (𝑌, Σ𝑌 ) = (𝑋 × 𝑌, Σ𝑋 ⊗ Σ𝑌 ) comprises the

product of sets with the least 𝜎-algebra making the projections 𝑋 ← 𝑋 × 𝑌 → 𝑌 measurable. The

category of measurable spaces and measurable functions is a distributive category.

A probability kernel between measurable spaces (𝑋, Σ𝑋 ) and (𝑌, Σ𝑌 ) is a function 𝑘 : 𝑋 × Σ𝑌 →
[0, 1] that is measurable in the first argument and that is 𝜎-additive and has mass 1 in the second

argument.

To compose probability kernels, we briefly recall Lebesgue integration. Consider a measurable

space (𝑋, Σ𝑋 ), a measure 𝜇 : Σ𝑋 → [0, 1], and a measurable function 𝑓 : 𝑋 → [0, 1]. If 𝑓 is a simple

function, i.e. 𝑓 (𝑥) = ∑𝑚
𝑖=1 𝑟𝑖 · [𝑥 ∈ 𝑈𝑖 ] for some𝑚, 𝑟𝑖 ∈ [0, 1], and 𝑈𝑖 ∈ Σ𝑋 , the Lebesgue integral∫

𝑓 d𝜇 =
∫
𝑓 (𝑥) 𝜇 (d𝑥) ∈ [0, 1] is defined to be

∑𝑚
𝑖=1 𝑟𝑖 × 𝜇 (𝑈𝑖 ). If 𝑓 is not a simple function, there

exists a sequence of increasing simple functions 𝑓1, 𝑓2, . . . : 𝑋 → [0, 1] such that sup𝑘 𝑓𝑘 (𝑥) = 𝑓 (𝑥)
(for example, by taking 𝑓𝑘 (𝑥)

def

= ⌊10𝑘 𝑓 (𝑥)⌋/10𝑘 ). In that case, the integral is defined to be the limit

of the integrals of the 𝑓𝑘 ’s (which exists by monotone convergence).

Probability kernels can be equivalently formulated as morphisms 𝑋 → G(𝑌 ), where G is the

Giry monad:

Definition 11 ([32]). The Giry monad G is a strong monad on the category Meas of measurable
spaces given by
• G(𝑋 ) is the set of probability measures on 𝑋 , with the least 𝜎-algebra making

∫
𝑓 d(−) :

G(𝑋 ) → [0, 1] measurable for all measurable 𝑓 : 𝑋 → [0, 1];
• the unit 𝜂 maps 𝑥 to the Dirac distribution 𝛿𝑥 ;
• the bind is given by composing kernels:

(𝑘 >>= 𝑙) (𝑧,𝑈 ) =
∫

𝑙 ((𝑧, 𝑥),𝑈 ) 𝑘 (𝑧, d𝑥). (10)

Proposition 12. The monad G is commutative and affine.

Proof notes. Commutativity boils down to Fubini’s theorem for reordering integrals and

affineness is marginalization (since probability measures have mass 1). See also [40]. □

Consider the real-numbers language (Ex. 1(2)). Let JrealK = R, with the Borel sets, and interpret

normal as the normal probability measure on R. The basic arithmetic operations are all measurable.

Among the following three programs

let𝑥 = normal(0, 1) in𝑥 + 𝑥 (11)

let𝑥 = normal(0, 1) in let𝑦 = normal(0, 1) in𝑥 + 𝑦 (12)

normal(0, 1) + normal(0, 1) (13)

the programs (12) and (13) denote the same normal distribution with variance 2, whereas (11)

denotes a distribution with variance 4. Notice that we cannot use (9) to equate all the programs,

because JnormalK is not deterministic.

We can also interpret the Bernoulli language (Ex. 1(1)) in the Giry monad; this interpretation

gives the same equational theory as the interpretation in FinStoch and in the distribution monad

in Section 2.3.2.
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We can also give some interpretations for the graph interface (Ex. 1(3)) in the Giry monad. For an

informal example, consider the geometric example from Section 1.1, let JvertexK = 𝑆2 (the sphere),

and define JnewK to be the uniform distribution on the sphere. (See also Section 5.2.)

2.3.4 Affine monads from distributive Markov categories. The following result, a converse to Propo-
sition 8, demonstrates that the new notion of distributive Markov category (Def. 2) is a canonical

one, and emphasises the close relationship between semantics with distributive Markov categories

and semantics with commutative affine monads.

Proposition 13. Let C be a small distributive Markov category. Then, there is a distributive
category A with a commutative affine monad 𝑇 on it and a full and faithful functor C→ Kl(𝑇 ) that
preserves symmetric monoidal structure, comonoids, and sums.

Proof notes. Our proof is essentially a recasting of [66, §7] to this different situation.

Let Cdet be the wide subcategory of C comprising the deterministic morphisms, and write

𝐽 : Cdet → C for the identity-on-objects inclusion functor. Note that Cdet is a distributive category.

We would like to exhibit C as the Kleisli category for a monad on Cdet, but this might not be possible:

intuitively, Cdet might be too small for the monad to exist. Instead, we first embed Cdet in a larger

category A and construct a monad on A.
The main construction in our proof is the idea that if X is a small distributive monoidal category,

then the category FP(Xop, Set) of finite-product-preserving functors is such that

• FP(Xop, Set) is cocomplete and moreover total as a category;

• FP(Xop, Set) admits a distributive monoidal structure;

• the Yoneda embeddingX→ [Xop, Set], which is full and faithful, factors through FP(Xop, Set),
and this embedding X→ FP(Xop, Set) preserves finite sums and is strongly monoidal;

• the Yoneda embedding exhibits FP(Xop, Set) as a free colimit completion of X as a monoidal

category that already has finite coproducts.

So we let A = FP(Cop

det, Set) comprise the finite-product-preserving functors Cop

det → Set. This is
a distributive category. To get a monad on A, we note that since FP(Cop, Set) has finite coproducts
and Cdet → C→ FP(Cop, Set) preserves finite coproducts and is monoidal, the monoidal structure

induces a canonical colimit-preserving monoidal functor 𝐽! : FP(Cop

det, Set) → FP(Cop, Set). Any
colimit-preserving functor 𝐽! out of a total category has a right adjoint 𝐽 ∗, and hence a monoidal

monad (𝐽 ∗ 𝐽!) is induced on A.
It remains for us to check that the embedding C→ FP(Cop, Set) factors through the comparison

functor Kl(𝐽 ∗ 𝐽!) → FP(Cop, Set), which follows from the fact that 𝐽 : Cdet → C is identity on

objects. □

2.4 Bernoulli bases, numerals and observation
Although an interface may have different type constants, it will always have the ‘numeral’ types,

sometimes called ‘finite’ types:

0 unit bool = unit + unit unit + unit + unit . . .

For probabilistic programming languages, there is a clear expectation of what will happen when

we run a program of type bool: it will randomly produce either true or false, each with some

probability. Similarly for other numeral types. For type constants, we might not have evident

notions of observation or expected outcomes. But for numeral types, it should be routine. We now

make this precise via the notion of Bernoulli base.

On the semantic side, distributive Markov categories will always have ‘numeral’ objects

0 1 2

def

= 1 + 1 3

def

= 1 + 1 + 1 . . .
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For any type 𝐴 formed without type constants, and any Markov category, we have that J𝐴K � 𝑛 for

some numeral object. Any equational theory for the programming language induces in particular

an equational theory for the sub-language without any type constants.

Proposition 14. For any distributive Markov category C, let CN be the category whose objects
are natural numbers, and where the morphisms are the morphisms in C between the corresponding
numeral objects. This is again a distributive Markov category.

Example 15. (1) FinSetN = SetN is equivalent to FinSet as a category.
(2) For the finite distributions and the Giry monad (§2.3.2–2.3.3), Kl(D)N ≃ Kl(G)N ≃ FinStoch.

Recall that a functor is faithful if it is injective on hom-sets.

Definition 16. A Bernoulli base for a distributive Markov category C is a faithful distributive
Markov functor Ψ : CN↣ FinStoch.

Thus, for any distributive Markov category with a Bernoulli base, for any closed term ⊢ 𝑡 : 𝐴 of

numeral type (J𝐴K = 𝑛), we can regard its interpretation J𝑡K : 1→ 𝑛 as nothing but a probability

distributionΨ(J𝑡K) on𝑛 outcomes. This is the case even if 𝑡 uses term constants and has intermediate

subterms using type constants.

Example 17. All the examples seen so far can be given Bernoulli bases. In fact, for FinStoch, Kl(D)
and Kl(G), the functor Ψ : CN↣ FinStoch is an isomorphism of distributive Markov categories.

When Ψ is an isomorphism of categories, that means that all the finite probabilities are present
in C. This is slightly stronger than we need in general. For instance, when C = FinSet, there is a
unique Bernoulli base Ψ : FinSetN ↣ FinStoch, taking a function to a 0/1-valued matrix, but it

is not full. We could also consider variations on FinStoch. For example, consider the subcategory

FinQStoch of FinStoch where the matrices are rational-valued; this has a Bernoulli base that is not

an isomorphism.

2.5 Quotients of distributive Markov categories
We provide a new, general method for constructing a Bernoulli-based Markov category out of

a distributive Markov category. Our construction is a categorical formulation of the notion of

contextual equivalence.

Recall that, in general, contextual equivalence for a programming language starts with a notion

of basic observation for closed programs at ground types. We then say that programs Γ ⊢ 𝑡,𝑢 : 𝐴

at higher types are contextually equivalent if for every context C with ⊢ C[𝑡], C[𝑢] : 𝑛, for some

ground type 𝑛, we have that C[𝑡] and C[𝑢] satisfy the same observations. In the categorical setting,

the notion of observation is given by a distributive Markov functor CN → FinStoch, and the notion

of context C is replaced by suitable morphisms (ℎ, 𝑘 below).

Proposition 18. Let C be a distributive Markov category, and let Ψ : CN → FinStoch be a
distributive Markov functor. Suppose that for every object 𝑋 ∈ C, either 𝑋 = 0 or there exists a
morphism 1→ 𝑋 . Then, there is a distributive Markov category C/Ψ with a Bernoulli base, equipped
with a faithful distributive Markov functor C → C/Ψ and a factorization of distributive Markov
functors Ψ = CN → (C/Ψ)N↣ FinStoch.

Proof. Define an equivalence relation ∼ on each hom-set C(𝑋,𝑌 ), by 𝑓 ∼ 𝑔 : 𝑋 → 𝑌 if

∀𝑍,𝑛.∀ℎ : 1→ 𝑋 ⊗ 𝑍 .∀𝑘 : 𝑌 ⊗ 𝑍 → 𝑛. Ψ(𝑘 · (𝑓 ⊗ 𝑍 ) · ℎ) = Ψ(𝑘 · (𝑔 ⊗ 𝑍 ) · ℎ) in FinStoch(1, 𝑛).
It is immediate that composition of morphisms respects ∼, and hence we have a category: the

objects are the same as C, and the morphisms are ∼-equivalence classes. This is our category C/Ψ.
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It is also immediate that if 𝑓 ∼ 𝑔 and 𝑓 ′ ∼ 𝑔′ then (𝑓 ⊗ 𝑓 ′) ∼ (𝑔′ ⊗ 𝑔′). Thus, C/Ψ is a monoidal

category.

For the coproduct structure, we must show that if 𝑓 ∼ 𝑔 : 𝑋 → 𝑌 and 𝑓 ′ ∼ 𝑔′ : 𝑋 ′ → 𝑌 ′ then
(𝑓 + 𝑓 ′) ∼ (𝑓 ′ + 𝑔′) : 𝑋 + 𝑋 ′ → 𝑌 + 𝑌 ′. We proceed by noting that since we have morphisms

𝑥 : 1→ 𝑋 and 𝑥 ′ : 1→ 𝑋 ′, as well as terminal morphisms 𝑋 → 1 and 𝑋 ′ → 1, we have that 𝑋 +𝑋 ′
is a retract of 𝑋 ⊗ 𝑋 ′ ⊗ 2, with the section and retraction given by:

𝑋 +𝑋 ′ 𝑋⊗𝑥 ′+𝑥⊗𝑋−−−−−−−−−→ 𝑋 ⊗𝑋 ′ +𝑋 ⊗𝑋 ′ � 𝑋 ⊗𝑋 ′ ⊗ 2 𝑋 ⊗𝑋 ′ ⊗ 2 � 𝑋 ⊗𝑋 ′ +𝑋 ⊗𝑋 ′ 𝑋⊗!+!⊗𝑋−−−−−−−→ 𝑋 +𝑋 ′

Thus, by composing with this retract, it suffices to check that (𝑓 ⊗ 𝑓 ′ ⊗ 2) ∼ (𝑔 ⊗ 𝑔′ ⊗ 2), which we

have already shown.

The functor Ψ : CN → FinStoch clearly factors through (C/Ψ)N, but it remains to check that

the functor (C/Ψ)N → FinStoch is now faithful (Bernoulli base). So suppose that Ψ(𝑓 ) = Ψ(𝑔). To
show that 𝑓 ∼ 𝑔 : 1 → 𝑚, we consider ℎ : 1 → 1 ⊗ 𝑍 , and 𝑘 : 𝑚 ⊗ 𝑍 → 𝑛. We must show that

Ψ(𝑘 · (𝑓 ⊗ 𝑍 ) · ℎ) = Ψ(𝑘 · (𝑔 ⊗ 𝑍 ) · ℎ). Since ℎ = 1 ⊗ ℎ′, for some ℎ′ : 1→ 𝑍 , we have

Ψ(𝑘 · (𝑓 ⊗ 𝑍 ) · ℎ) = Ψ(𝑘 · (𝑚 ⊗ ℎ′) · 𝑓 ) = Ψ(𝑘 · (𝑚 ⊗ ℎ′)) · Ψ(𝑓 )
= Ψ(𝑘 · (𝑚 ⊗ ℎ′)) · Ψ(𝑔) = Ψ(𝑘 · (𝑚 ⊗ ℎ′) · 𝑔) = Ψ(𝑘 · (𝑔 ⊗ 𝑍 ) · ℎ).

□

3 FROM PROGRAM EQUATIONS TO GRAPHONS
The graph interface for the probabilistic programming language (Ex. 1(3)) does not have one fixed

equational theory. Rather, we want to consider different equational theories for the language,

corresponding to different implementations of the interface for the graph (see also §1.2). We now

show how the different equational theories for the graph language each give rise to a graphon, by

building adjacency matrices for finite graphs (shown in (16)). To do this, we set up the well-behaved

equational theories (§2.4), recall the connection between graphons and finite random graphs (§3.1),

and then show the main result (§3.2, Theorem 23).

3.1 Graphons as consistent and local random graph models
For all 𝑛 ≥ 1, let [𝑛] be the set {1, . . . , 𝑛}. (We sometimes omit the square brackets, when it is clear.)

A simple undirected graph 𝑔 with 𝑛 nodes can be represented by its adjacency matrix 𝐴𝑔 ∈ [2(𝑛
2 ) ]

such that 𝐴𝑔 (𝑖, 𝑖) = 0 and 𝐴𝑔 (𝑖, 𝑗) = 𝐴𝑔 ( 𝑗, 𝑖). Henceforth, we will assume that finite graphs are

simple and undirected, unless otherwise stated. A random finite graph, then, has a probability

distribution in D([2(𝑛2 ) ]) that only assigns non-zero probability to adjacency matrices.

Definition 19 (e.g. [56], §11.2.1). A random graph model is a sequence of distributions of random
finite graphs of the form:

𝑝1 ∈ D([2(1
2 ) ]), 𝑝2 ∈ D([2(2

2 ) ]), . . . , 𝑝𝑛 ∈ D([2(𝑛
2 ) ]), . . .

We say such a sequence is
• exchangeable if each of its elements is invariant under permuting nodes: for every 𝑛 and
bijection 𝜎 : [𝑛] → [𝑛], we have D(2(𝜎2 ) ) (𝑝𝑛) = 𝑝𝑛 (where 2(𝜎

2 )
: [2(𝑛2 ) ] → [2(𝑛2 ) ] is the

function that permutes the rows and columns according to 𝜎);
• consistent if the sequence is related by marginals: for every 𝑛 and for the inclusion function
𝜄 : [𝑛] ↩→ [𝑛 + 1], D(2(𝜄2 ) ) (𝑝𝑛+1) = 𝑝𝑛 (where 2(𝜄

2 )
: [2( (𝑛+1)2 ) ] → [2(𝑛2 ) ]);

• local if the subgraphs are independent: if 𝐴 ⊆ [𝑛] and 𝐵 ⊆ [𝑛] are disjoint, then we have
an injective function 𝚥 : 𝐴2 + 𝐵2 ↩→ [𝑛]2, and D(2𝚥) (𝑝𝑛) ∈ D([2(𝐴

2 ) × 2(𝐵2 ) ]) is a product
measure 𝑝𝐴 ⊗ 𝑝𝐵 (where 2( 𝚥

2 )
: [2(𝑛2 ) ] → [2(𝐴2 ) × 2(𝐵2 ) ] is the evident projection).
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Definition 20 (e.g. [56]). A graphon𝑊 is a symmetric measurable function𝑊 : [0, 1]2 → [0, 1].

Given a graphon𝑊 , we can generate a finite simple undirected graph 𝑔 with vertex set [𝑛]
by sampling 𝑛 points 𝑥1, . . . , 𝑥𝑛 uniformly from [0, 1] and, then, including the edge (𝑖, 𝑗) with
probability𝑊 (𝑥𝑖 , 𝑥 𝑗 ) for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛. This sampling procedure defines a distribution over finite

graphs: the probability 𝑝𝑊,𝑛 (𝐴𝑔) of the graph 𝑔 = ( [𝑛], 𝐸) is:∫
[0,1]𝑛

∏
(𝑖, 𝑗 ) ∈𝐸

𝑊 (𝑥𝑖 , 𝑥 𝑗 )
∏
(𝑖, 𝑗 )∉𝐸

(
1 −𝑊 (𝑥𝑖 , 𝑥 𝑗 )

)
d(𝑥1 . . . 𝑥𝑛) (14)

Proposition 21 ([57]; [56], §11.2). Every graphon generates an exchangeable, consistent, and local
random graph model, by the sampling procedure of (14). Conversely, every exchangeable, consistent,
and local random graph model is of the form 𝑝𝑊,𝑛 for some graphon𝑊 .

3.2 Theories of program equivalence induce graphons
In this section we consider the instance of the generic language with the graph interface (Ex. 1(3)):

vertex new : unit→ vertex edge : vertex ∗ vertex→ bool

We consider a theory of program equivalence, i.e. a distributive Markov category with a distin-

guished object JvertexK and morphisms JnewK : 1→ JvertexK and JedgeK : JvertexK ⊗ JvertexK→
1 + 1. We make two assumptions about the theory:

• The graphs are simple:

𝑥 : vertex ⊢ edge(𝑥, 𝑥) ≡ false 𝑥,𝑦 : vertex ⊢ edge(𝑥,𝑦) ≡ edge(𝑦, 𝑥) (15)

and edge is deterministic.

• The theory is Bernoulli based (§2.4).

For each 𝑛 ∈ N, we can build a random graph with 𝑛 vertices as follows. We consider the following

program 𝑡𝑛 :

⊢ let𝑥1 = new() in . . . let𝑥𝑛 = new() in
©­­«
edge(𝑥1, 𝑥1) . . . edge(𝑥1, 𝑥𝑛)

...
...

edge(𝑥𝑛, 𝑥1) . . . edge(𝑥𝑛, 𝑥𝑛)

ª®®¬ : bool(𝑛
2 )

(16)

(Here we use syntactic sugar, writing a matrix instead of iteratively using pairs.)

Because the equational theory is Bernoulli-based, the interpretation J𝑡𝑛K induces a probability
distribution ΨJ𝑡𝑛K on 2

(𝑛2 )
. For clarity, we elide Ψ in what follows, since it is faithful.

Proposition 22. Each random matrix in (16) is a random adjacency matrix, i.e. a random graph.

Proof note. This follows from (15). □

Theorem 23. For any Bernoulli-based equational theory, the random graph model (J𝑡𝑛K)𝑛 in (16)

is exchangeable, consistent, and local. Thus, the equational theory induces a graphon.

Proof. We denote the matrix in (16) by (edge(𝑥𝑖 , 𝑥 𝑗 ))𝑖, 𝑗∈[𝑛] .

Exchangeability. We show that the distribution J𝑡𝑛K is invariant under relabeling the nodes. By

commutativity of the let construct (7), the program

𝑡𝜎𝑛
def

= let𝑥𝜎−1 (1) = new() in . . . let𝑥𝜎−1 (𝑛) = new() in (edge(𝑥𝑖 , 𝑥 𝑗 ))𝑖, 𝑗∈[𝑛]

satisfies J𝑡𝜎𝑛 K = J𝑡𝑛K. Hence, D(2𝜎
2 ) (J𝑡𝑛K) = J𝑡𝜎𝑛 K = J𝑡𝑛K, for every 𝑛 and bijection 𝜎 : [𝑛] → [𝑛].
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Consistency. We define a macro subm𝐼 in the graph programming language to extract a submatrix

at the index set 𝐼 ⊆ [𝑛]: we have the (definitional) equality

subm𝐼 ((𝑎𝑖, 𝑗 )𝑖, 𝑗∈[𝑛])
def

= (𝑎𝑖, 𝑗 )𝑖, 𝑗∈𝐼 for 𝐼 ⊆ [𝑛] .

We need to show that, if we delete the last node from a graph sampled from J𝑡𝑛+1K, the resulting
graph has distribution J𝑡𝑛K. This amounts to the affineness property (8), as follows. Let 𝑔 ∼ J𝑡𝑛+1K
be a random graph, and let 𝑔′

def

= 𝑔| [𝑛] be the graph obtained by deleting the last node from 𝑔. Then

clearly, the adjacency matrix of 𝑔′ is the adjacency matrix of 𝑔 where the last row and column have

been removed, i.e. 𝑔′ is sampled from the interpretation of the program:

𝑡 ′
def

= let𝑥1 = new() in . . . let𝑥𝑛 = new() in let𝑥𝑛+1 = new() in subm[𝑛]
(
(edge(𝑥𝑖 , 𝑥 𝑗 ))𝑖, 𝑗∈[𝑛+1]

)
≡ let𝑥1 = new() in . . . let𝑥𝑛 = new() in let𝑥𝑛+1 = new() in (edge(𝑥𝑖 , 𝑥 𝑗 ))𝑖, 𝑗∈[𝑛]
≡ let𝑥1 = new() in . . . let𝑥𝑛 = new() in (edge(𝑥𝑖 , 𝑥 𝑗 ))𝑖, 𝑗∈[𝑛] (by (8))

≡ 𝑡𝑛 .

Locality. Without loss of generality (by exchangeability and consistency), we need to show that

for every random graph 𝑔 ∼ J𝑡𝑛K and 1 < 𝑘 < 𝑛, the subgraphs 𝑔𝐴𝑘
, 𝑔𝐵𝑘

respectively induced by

the sets 𝐴𝑘
def

= [𝑘] and 𝐵𝑘
def

= {𝑘 + 1, . . . , 𝑛} are independent as random variables. Let 𝚥 be the

injection 𝚥 : 𝐴2

𝑘
+ 𝐵2

𝑘
↩→ 𝑛2, and 𝑔′ ∼ D(2𝚥) (J𝑡𝑛K) ∈ D(2(𝐴

2

𝑘
) × 2(𝐵2

𝑘
) ). We want to show that 𝑔′ and

(𝑔𝐴𝑘
, 𝑔𝐵𝑘
) ∼ J𝑡𝑘K⊗ J𝑡𝑛−𝑘K (by consistency) are equal in distribution. Modulo 𝛼-renaming, (𝑔𝐴𝑘

, 𝑔𝐵𝑘
)

is sampled from the interpretation of the program:

𝑡 ′
def

=
(
let𝑥1 = new() in . . . let𝑥𝑘 = new() in (edge(𝑥𝑖 , 𝑥 𝑗 ))𝑖, 𝑗∈[𝑘 ],
let𝑥𝑘+1 = new() in . . . let𝑥𝑛 = new() in (edge(𝑥𝑖 , 𝑥 𝑗 ))𝑘+1≤𝑖, 𝑗≤𝑛

)
≡ let𝑢1 = (let𝑥1 = new() in . . . let𝑥𝑘 = new() in (edge(𝑥𝑖 , 𝑥 𝑗 ))𝑖, 𝑗∈𝐴𝑘

) in
let𝑢2 = (let𝑥𝑘+1 = new() in . . . let𝑥𝑛 = new() in (edge(𝑥𝑖 , 𝑥 𝑗 ))𝑖, 𝑗∈𝐵𝑘

) in (𝑢1, 𝑢2) (by (6))

≡ let𝑥1 = new() in . . . let𝑥𝑘 = new() in let𝑥𝑘+1 = new() in . . . let𝑥𝑛 = new() in ((5),(7))

let𝑢1 = subm𝐴𝑘

(
(edge(𝑥𝑖 , 𝑥 𝑗 ))𝑖, 𝑗∈[𝑛]

)
in let𝑢2 = subm𝐵𝑘

(
(edge(𝑥𝑖 , 𝑥 𝑗 ))𝑖, 𝑗∈[𝑛]

)
in (𝑢1, 𝑢2)

≡ let𝑥1 = new() in . . . let𝑥𝑛 = new() in
let 𝑡 = (edge(𝑥𝑖 , 𝑥 𝑗 ))𝑖, 𝑗∈[𝑛] in let𝑢1 = subm𝐴𝑘

(𝑡) in let𝑢2 = subm𝐵𝑘
(𝑡) in (𝑢1, 𝑢2) (by (9))

≡ let𝑥1 = new() in . . . let𝑥𝑛 = new() in
let 𝑡 = (edge(𝑥𝑖 , 𝑥 𝑗 ))𝑖, 𝑗∈[𝑛] in

(
subm𝐴𝑘

(𝑡), subm𝐵𝑘
(𝑡)

)
(by (6))

≡ let 𝑡 =
(
let𝑥1 = new() in . . . let𝑥𝑛 = new() in (edge(𝑥𝑖 , 𝑥 𝑗 ))𝑖, 𝑗∈[𝑛]

)
in(

subm𝐴𝑘
(𝑡), subm𝐵𝑘

(𝑡)) (by (5))

and 𝑔′ ∼ D(2𝚥) (J𝑡𝑛K) is indeed sampled from the interpretation of the latter program, which yields

the result. □

4 FROM GRAPHONS TO PROGRAM EQUATIONS
In Section 3, we showed how a distributive Markov category modelling the graph interface (Ex. 1(3))

gives rise to a graphon. In this section, we establish a converse: every graphon arises in this way

(Corollary 26). Theorem 25 will establish slightly more: there is a ‘generic’ distributive Markov
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category (§4.1) modelling the graph interface whose Bernoulli-based quotients are in precise corre-

spondence with graphons (§4.2). This approach also suggests an operational way of implementing

the graph interface for any graphon (§4.3).

4.1 A generic distributive Markov category for the graph interface
We construct this generic category in two steps. We first create a distributive Markov category,

actually a distributive category, Fam(Gop), that supports (vertex, edge). We then add new using

the monoidal indeterminates method of [34].

4.1.1 Step 1: A distributive category with edge. We first define a distributive category that supports

(vertex, edge). Let G be the category of finite graphs and functions that preserve and reflect the

edge relation. That is, a morphism 𝑓 : 𝑔→ 𝑔′ is a function 𝑓 : 𝑉𝑔 → 𝑉 ′𝑔 such that for all 𝑣,𝑤 ∈ 𝑉𝑔
we have 𝐸𝑔 (𝑣,𝑤) if and only if 𝐸𝑔 (𝑓 (𝑣), 𝑓 (𝑤)).

Recall (e.g. [36]) that the free finite coproduct completion of a category C, Fam(C) is given
as follows. The objects of Fam(C) are sequences (𝑋1 . . . 𝑋𝑛) of objects of C, and the morphisms

(𝑋1 . . . 𝑋𝑚) → (𝑌1 . . . 𝑌𝑛) are pairs (𝑓 , {𝑓𝑖 }𝑚𝑖=1) of a function 𝑓 :𝑚 → 𝑛 and a sequence of morphisms

𝑓1 : 𝑋1 → 𝑌𝑓 (1) , . . . , 𝑓𝑚 : 𝑋𝑚 → 𝑌𝑓 (𝑚) in C.
We consider the category Fam(Gop). Let JvertexK = (1), the singleton sequence comprising the

one-vertex graph.

Proposition 24. (1) The free coproduct completion Fam(Gop) is a distributive category, with
the product JvertexK𝑛 being the sequence of all graphs with 𝑛 vertices. In particular, JvertexK2 is
a sequence with two components, the complete graph and the edgeless graph with two vertices.

(2) Let edge : JvertexK × JvertexK→ 1 + 1 be the morphism (id, {!, !}), intuitively returning true
for the edge, and false for the edgeless graph. Here the terminal object 1 of Fam(Gop) is the
singleton tuple of the empty graph. This interpretation satisfies (15).

Proof notes. Item (1) follows from [36], which shows that limits in Fam(Gop) amount to

“multi-colimits” in G. For example, the set of all graphs with 𝑛 vertices is a multi-coproduct of the

one-vertex graph in G, hence forms a product in Fam(Gop). Item (2) is then a quick calculation. All

morphisms in Fam(Gop) are deterministic. □

4.1.2 Step 2: Adjoining new. In Section 4.1.1, we introduced a distributive category that interprets

the interface (vertex, edge). But it does not support new, and indeed there are no morphisms

1→ vertex. To additionally interpret (new), we freely adjoin it, using the ‘monoidal indeterminates’

method of Hermida and Tennent [34]. Hermida and Tennent demonstrate extensively how to use it to

add ‘local’ effects in semantics of memory, and it has also been related to quantum phenomena [8, 37]

and gradient methods [20].

Let FinSetInj be the category of finite sets and injections. It is a monoidal category with the

disjoint union monoidal structure (e.g. [25, 65]). Consider the functor 𝐽 : FinSetInjop → Fam(Gop),
with 𝐽 (𝑛) = JvertexK𝑛 , and where the functorial action is by exchange and projection. This is a

strong monoidal functor. (Indeed, it is the unique monoidal functor with 𝐽 (1) = JvertexK.)
For any monoidal functor, Hermida and Tennent [34] provide monoidal indeterminates by

introducing a ‘polynomial category’, by analogy with a polynomial ring. In this case, the polynomial

category Fam(Gop) [𝜈 : 𝐽FinSetInjop], which we abbreviate Fam(Gop) [𝜈], has the same objects as

Fam(Gop), but the morphisms ®𝑋 → ®𝑌 are equivalence classes of morphisms

JvertexK𝑛 × ®𝑋 → ®𝑌
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modulo reindexing by FinSetInjop. To be precise,

Fam(Gop) [𝜈] ( ®𝑋, ®𝑌 ) = colim

𝑛∈FinSetInj
Fam(Gop) (JvertexK𝑛 × ®𝑋, ®𝑌 ). (17)

The polynomial category Fam(Gop) [𝜈] is again a monoidal category, and there is a monoidal

functor Fam(Gop) → Fam(Gop) [𝜈], regarding each morphism 𝑓 : 𝑋 → 𝑌 as a morphism 𝑓 :

JvertexK0 ⊗ 𝑋 → 𝑌 . But there is also now an adjoined morphism 𝜈 : 1→ JvertexK.
This monoidal category Fam(Gop) [𝜈] moreover inherits the distributive coproduct structure

from Fam(Gop), and the functor Fam(Gop) → Fam(Gop) [𝜈] is a distributive Markov functor. (In

general, the monoidal indeterminates construction might not respect coproducts, but in this case it

does, because the monoidal unit of FinSetInjop is terminal.)

In summary:

• Fam(Gop) [𝜈] is a distributive Markov category.

• Fam(Gop) [𝜈] supports the graph interface, via the interpretation of (vertex, edge) in Fam(Gop),
but also with the interpretation JnewK = 𝜈 : 1→ JvertexK.

4.2 Bernoulli bases for random graph models
The following gives a precise characterization of graphons in terms of the numerals of Fam(Gop) [𝜈].

Theorem 25. To give a distributive Markov functor Fam(Gop) [𝜈]N → FinStoch is to give a
graphon.

Proof outline. We begin by showing a related characterization: that graphons correspond to

certain natural transformations. Observe that any distributive Markov category C gives rise to

a symmetric monoidal functor C(1,−) : FinSetN → Set, regarding the numerals of FinSetN as

objects of C (§2.4). Let𝐺𝑘 = 2
𝑘 (𝑘−1)/2

be the set of 𝑘-vertex graphs. We can characterize the natural

transformations 𝛼 : Fam(Gop) [𝜈] (1,−) → FinStoch(1,−) as
Nat(Fam(Gop) [𝜈] (1,−) , FinStoch(1,−))
� Nat

(
colim

𝑘∈FinSetInj
FinSet(𝐺𝑘 ,−) , D(−)

)
(Ex. 15(2), Prop. 24(1) and (17))

� lim

𝑘∈FinSetInjop
Nat(FinSet(𝐺𝑘 ,−) , D(−)) (universal property of colimits)

� lim

𝑘∈FinSetInjop
D(𝐺𝑘 ) (Yoneda lemma)

and thus to give a natural transformation Fam(Gop) [𝜈] (1,−) → FinStoch(1,−) is to give a family of

distributions 𝑝𝑘 on𝐺𝑘 that are consistent and exchangeable (Def. 19). Such a natural transformation

is monoidal if and only if the sequence is also local. Hence a monoidal natural transformation is

the same thing as a random graph model.

In fact, every monoidal natural transformation 𝛼 : Fam(Gop) [𝜈] (1,−) → FinStoch(1,−) arises
uniquely by restricting a distributive Markov functor 𝐹 : Fam(Gop) [𝜈]N → FinStoch. We now

show this, to conclude our proof. Given 𝛼 , let 𝐹𝑚,𝑛 : Fam(Gop) [𝜈]N (𝑚,𝑛) → FinStoch(𝑚,𝑛) be:

Fam(Gop) [𝜈]N (𝑚,𝑛) � Fam(Gop) [𝜈]N (1, 𝑛)𝑚
𝛼𝑚
𝑛−−→ FinStoch(1, 𝑛)𝑚 � FinStoch(𝑚,𝑛).

It is immediate that this 𝐹 preserves the symmetric monoidal structure and coproduct structure,

but not that 𝐹 is a functor. However, the naturality of 𝛼 in FinSetN gives us that 𝐹 preserves

postcomposition by morphisms of FinSetN. All of this implies that general categorical composition

is preserved as well, since, in any distributive Markov category of the form CN, for 𝑓 : 𝑙 →𝑚 and

𝑔 :𝑚 → 𝑛, the composite 𝑔 ◦ 𝑓 : 𝑙 → 𝑛 is given by

𝑙 = 𝑙 ⊗ 1
⊗𝑚 𝑓 ⊗𝑔1⊗...⊗𝑔𝑚−−−−−−−−−−→𝑚 ⊗ 𝑛⊗𝑚 eval−−−→ 𝑛



785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Probabilistic programming interfaces for random graphs 17

where 𝑔𝑖 = 𝑔 ◦ 𝜄𝑖 for 𝑖 = 1, . . . ,𝑚 and eval is just the evaluation map𝑚 × 𝑛𝑚 → 𝑛 in FinSet. □

Corollary 26. Every graphon arises from a distributive Markov category via the random graph
model in (16).

Proof summary. Given a graphon, we consider the distributive Markov functor that corre-

sponds to it, Ψ : Fam(Gop) [𝜈]N → FinStoch, by Theorem 25. Using the quotient construction of

Theorem 18, we get a distributive Markov category with a Bernoulli base. It is straightforward to

verify that the random graph model induced by (16) is the original graphon. □

4.3 Remark on operational semantics
The interpretation in this section suggests a general purpose operational semantics for closed

programs at ground type, ⊢ 𝑡 : 𝑛, along the following lines:

(1) Calculate the interpretation J𝑡K : 𝐼 → 𝑛 in Fam(Gop) [𝜈]. This is symbolic because the

morphisms of the Markov category Fam(Gop) [𝜈] are built from tuples of finite graph

homomorphisms. In effect, this interpretation pulls all the new’s to the front of the term.

(2) Apply the Markov functor Ψ(J𝑡K) to obtain a probability distribution on 𝑛, and sample from

this distribution to return a result.

5 INTERPRETATION: BLACK-AND-WHITE GRAPHONS VIA MEASURE-THEORETIC
PROBABILITY

In Section 4, we gave a general syntactic construction for building an equational theory from a

graphon. Since that definition is based on free constructions and quotients, it does not a priori

‘explain’ what the type vertex stands for. Like contextual equivalence of programs, it does not a

priori give useful compositional reasoning methods. To prove two programs are equal, according

to the construction of Prop. 18, one needs to quantify over all 𝑍 , ℎ, and 𝑘 , in general.

In this section, we show that one class of graphons, black-and-white graphons (Def. 27), admits

a straightforward measure-theoretic semantics, and we can thus use the equational theory induced

by this semantics, rather than the method of Section 4. This measure-theoretic semantics is close to

previous measure-theoretic work on probabilistic programming languages (e.g. [54, 69]).

After recapping measure-theoretic probability (§2.3.3), in Section 5.1, we show that every black-

and-white graphon arises from a measure-theoretic interpretation (Prop. 28). In Section 5.2, by

defining ‘measure-theoretic interpretation’ more generally, we show that, conversely, this measure-

theoretic approach can only cater for black-and-white graphons (Prop. 29).

5.1 Black-and-white graphons from equational theories
Definition 27. [e.g. [41]] A graphon𝑊 : [0, 1]2 → [0, 1] is black-and-white if there exists

𝐸 : [0, 1]2 → {0, 1} such that𝑊 (𝑥,𝑦) = 𝐸 (𝑥,𝑦) for almost all 𝑥,𝑦.

Recall that the Giry monad gives rise to a Bernoulli-based distributive Markov category (§2.3.3,

Ex. 15). For any black-and-white graphon𝑊 , we define an interpretation of the graph interface for

the probabilistic programming language using G, as follows.
• JvertexK𝑊 = [0, 1]; JboolK𝑊 = 2, the discrete two element space;

• Jnew()K𝑊 = Uniform(0, 1), the uniform distribution on [0, 1];
• JedgeK𝑊 (𝑥,𝑦) = 𝜂 (𝐸 (𝑥,𝑦)) .

Proposition 28. Let𝑊 be a black-and-white graphon. The equational theory induced by J−K𝑊
induces the graphon𝑊 according to the construction in Section 3.2.
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Proof. Suppose that𝑊 corresponds to the sequence of random graphs 𝑝1, 𝑝2, . . . as in Section 3.1.

Consider the term 𝑡𝑛 in (16), and directly calculate its interpretation. Then, we get J𝑡𝑛K𝑊 = 𝑝𝑛 ,

via (14), as required.

The choice of 𝐸 does not matter in the interpretation of these terms, because𝑊 = 𝐸 almost

everywhere. □

5.2 All measure-theoretic interpretations are black-and-white
Although the model in Section 5.1 is fairly canonical, there are sometimes other enlightening

interpretations using the Giry monad. These also correspond to black-and-white graphons.

For example, consider the geometric-graph example from Figure 1. We interpret this using the

Giry monad, putting

• JvertexK = 𝑆2, the sphere; JboolK = 2;

• Jnew()K = Uniform(𝑆2), the uniform distribution on the sphere;

• JedgeK(𝑥,𝑦) = 𝜂 (𝑑 (𝑥,𝑦) < 𝜃 ), i.e. an edge if their distance is less than 𝜃 .

This will again induce a graphon, via (16). We briefly look at theories that arise in this more flexible

way:

Proposition 29. Consider any interpretation of the graph interface in the Girymonad: a measurable
space JvertexK, a measurable set JedgeK ⊆ JvertexK2, and a probability measure Jnew()K on JvertexK.
The induced graphon is black-and-white.

Proof notes. If JvertexK is standard Borel, the randomization lemma [46, Lem. 3.22] gives a

function 𝑓 : [0, 1] → JvertexK that pushes the uniform distribution on [0, 1] onto the probability
measure Jnew()K. We define a black-and-white graphon𝑊 by𝑊 (𝑥,𝑦) = 1 if (𝑓 (𝑥), 𝑓 (𝑦)) ∈ JedgeK,
and𝑊 (𝑥,𝑦) = 0 otherwise. Then direct calculation shows that this graphon interpretation J−K𝑊
gives the same sequence of graphs in (16), just by reparameterizing the integrals.

If JvertexK is not standard Borel, we note that there is an equivalent interpretation where it

is, because there exists a measure-preserving map JvertexK → Ω to a standard Borel space Ω
and a measurable set 𝐸 ⊆ Ω2

that pulls back to JedgeK, giving rise to the same graphon (e.g. [41,

Lemma 7.3]). □

Discussion. Proposition 29 demonstrates that this measure-theoretic interpretation has limitations.

Definition 30. For 𝛼 ∈ (0, 1), the Erdős–Rényi graphon 𝑊𝛼 : [0, 1]2 → [0, 1] is given by
𝑊𝛼 (𝑥,𝑦) = 𝛼 .

The Erdős-Rényi graphons cannot arise from measure-theoretic interpretations of the graph

interface, because they are not black-and-white. In Section 6, we give an alternative interpretation

for the Erdős–Rényi graphons.

The reader might be tempted to interpret an Erdős–Rényi graphon by defining

JedgeK𝑊𝛼
(𝑥,𝑦) = bernoulli(𝛼).

However, this interpretation does not provide a model for the basic equations of the language,

because this JedgeK is not deterministic, and derivable equations such as (4) will fail. Intuitively, once

an edge has been sampled between two given nodes, its presence (or absence) remains unchanged

in the rest of the program, i.e. the edge is not resampled again, it is memoized (see also [45, 68]).

Although not all graphons are black-and-white, these are still a widely studied and useful class.

They are often called ‘random-free’. For example, an alternative characterization is that the random

graph model of Prop. 21 has subquadratic entropy function [41, §10.6].
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6 INTERPRETATION: ERDŐS–RÉNYI GRAPHONS VIA RADO-NOMINAL SETS
In Section 4, we gave a general construction to show that every graphon arises from a Bernoulli-

based equational theory. In Section 5, we gave a more concrete interpretation, based on measure-

theory, for black-and-white graphons. We now consider the Erdős–Rényi graphons (Def. 30), which

are not black-and-white.

Our interpretation is based on Rado-nominal sets. These are also studied elsewhere, but for

different purposes (e.g. [12, 13, 51], [63, §1.9]).

Rado-nominal sets (§6.1) are sets that are equipped with an action of the automorphisms of

the Rado graph, which is an infinite graph that contains every finite graph. There is a particular

Rado-nominal setV of the vertices of the Rado graph. The type vertexwill be interpreted asV; edge
is interpreted using the edge relation 𝐸 on V. The equational theory induced by this interpretation

gives rise to the Erdős–Rényi graphons (Def. 30).

Since Rado-nominal sets form a model of ZFA set theory (Prop. 36), we revisit probability theory

internal to this setting. We consider internal probability measures on Rado-nominal sets (§6.3), and

we show that there are probability measures new on V that give rise to Erdős–Rényi graphons

(§6.3). The key starting point here is that, internal to Rado-nominal sets, the only functions V→ 2

are the sets of vertices that are definable in the language of graphs (§6.2).

We organize the probability measures (Def. 37) into a probability monad on Rado-nominal sets

(§6.4), analogous to the Giry monad. Fubini does not routinely hold in this setting (§6.4.4), but we

use a standard technique to cut down to a commutative affine monad (§6.4.5). This gives rise to a

Bernoulli-based equational theory, and in fact, this theory corresponds to Erdős–Rényi graphons

(via (16): Corollary 45).

6.1 Definition and first examples
The Rado graph (V, 𝐸) ([7, 67], also known as the ‘random graph’ [24]) is the unique graph, up to

isomorphism, with a countably infinite set of vertices that has the extension property: if 𝐴, 𝐵 are

disjoint finite subsets of V, then there is a vertex 𝑎 ∈ V \ (𝐴 ∪ 𝐵) with an edge to all the vertices in

𝐴 but none of the vertices in 𝐵.

The Rado graph embeds every finite graph, which can be shown by using the extension property

inductively.

An automorphism of the Rado graph is a graph isomorphism V→ V. The automorphisms of the

Rado graph relate to isomorphisms between finite graphs, as follows. First, if 𝐴 is a finite graph

regarded as a subset of V, then any automorphism 𝜎 induces an isomorphism of finite graphs

𝐴 � 𝜎 [𝐴]. Conversely, if 𝑓 : 𝐴 � 𝐵 is an isomorphism of finite graphs, and we regard 𝐴 and 𝐵 as

disjoint subsets of V, then there exists an automorphism 𝜎 of V that restricts to 𝑓 (i.e. 𝑓 = 𝜎 |𝐴).
We writeAut(Rado) for the group of automorphisms of (V, 𝐸). (This has been extensively studied

in model theory and descriptive set theory, e.g. [9, 48].)

Definition 31. A Rado-nominal set is a set 𝑋 equipped with an action • : Aut(Rado) × 𝑋 → 𝑋

(i.e. id • 𝑥 = 𝑥 ; (𝜎2 · 𝜎1) • 𝑥 = 𝜎2 • 𝜎1 • 𝑥) such that every element has finite support.
An element 𝑥 ∈ 𝑋 is defined to have finite support if there is a finite set 𝐴 ⊆ V such that for all

automorphisms 𝜎 , if 𝜎 fixes 𝐴 (i.e. 𝜎 |𝐴 = id𝐴), it also fixes 𝑥 (i.e. 𝜎 • 𝑥 = 𝑥).
Equivariant functions between Rado-nominal sets are functions that preserve the group action

(i.e. 𝑓 (𝜎 • 𝑥) = 𝜎 • (𝑓 (𝑥))).

Proposition 32 ([63]). If finite sets 𝐴, 𝐵 ⊆ V both support 𝑥 , so does 𝐴 ∩ 𝐵. Hence every element
has a least support.
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Example 33. (1) The set V of vertices is a Rado-nominal set, with 𝜎 • 𝑎 = 𝜎 (𝑎). The support of
vertex 𝑎 is {𝑎}.

(2) The set V × V of pairs of vertices is a Rado-nominal set, with 𝜎 • (𝑎, 𝑏) = (𝜎 (𝑎), 𝜎 (𝑏)).
The support of (𝑎, 𝑏) is {𝑎, 𝑏}. More generally, a finite product of Rado-nominal sets has a
coordinate-wise group action.

(3) The edge relation 𝐸 ⊆ V × V is a Rado-nominal subset (which is formally defined in §6.2)
because automorphisms preserve the edge relation.

(4) Any set 𝑋 can be regarded with the discrete action, 𝜎 • 𝑥 = 𝑥 , and then every element has
empty support. We regard these sets with the discrete action: 1 = {★}; 2 = {0, 1}; N; and the
unit interval [0, 1].

6.2 Powersets and definable sets
For any subset 𝑆 ⊆ 𝑋 of a Rado-nominal set, we can define 𝜎 • 𝑆 = 𝜎 [𝑆] = {𝜎 • 𝑥 | 𝑥 ∈ 𝑆}. We let

2
𝑋 = {𝑆 ⊆ 𝑋 | 𝑆 has finite support}. (18)

This is a Rado-nominal set.

Example 34. We give some concrete examples of subsets.
(1) For vertices 𝑏 and 𝑐 in V with no edge between them, the set {𝑎 ∈ V | 𝐸 (𝑎, 𝑏) ∧ 𝐸 (𝑎, 𝑐)} is the

set of ways of forming a horn. It has support {𝑏, 𝑐}.
(2) {(𝑏, 𝑐) ∈ V2 | 𝐸 (𝑎, 𝑏) ∧ 𝐸 (𝑎, 𝑐) ∧ ¬𝐸 (𝑏, 𝑐)} is the set of horns with apex 𝑎; it has support {𝑎}.
(3) {(𝑎, 𝑏, 𝑐) ∈ V3 | 𝐸 (𝑎, 𝑏) ∧ 𝐸 (𝑎, 𝑐) ∧ ¬𝐸 (𝑏, 𝑐)} is the set of all oriented horns; it has empty

support.
(4) (Non-example) There is a countable totally disconnected sub-graph of V; it does not have finite

support as a subset of V.

In fact, the finitely supported subsets correspond exactly to the definable sets in first-order logic

over the theory of graphs. The following results may be folklore.

Proposition 35. Let 𝑆 ⊆ V𝑛 , and 𝐴 ⊆ V be finite. The following are equivalent:
• 𝑆 = {(𝑠1, . . . 𝑠𝑛) | 𝜙 (𝑠1 . . . 𝑠𝑛)}, for a first-order formula 𝜙 over the theory of graphs, with
parameters in 𝐴;
• 𝑆 has support 𝐴.

Proof. (⇒) For all isomorphisms 𝑓 : V→ V that fix 𝐴, and for all elements 𝑎1 . . . 𝑎𝑘 ∈ 𝐴 and

subsets 𝑆 = {(𝑠1, . . . , 𝑠𝑛) | 𝜙 (𝑠1 . . . 𝑠𝑛, 𝑎1 . . . 𝑎𝑘 )}, we have
𝜙 (𝑓 (𝑠1) . . . 𝑓 (𝑠𝑛), 𝑎1 . . . 𝑎𝑘 ) = 𝜙 (𝑓 (𝑠1) . . . 𝑓 (𝑠𝑛), 𝑓 (𝑎1) . . . 𝑓 (𝑎𝑘 )).

Furthermore, 𝜙 is invariant with respect to 𝑓 . Thus, the image 𝑓 (𝑆) ⊆ 𝑆 . By a similar argument, we

have 𝑓 -1 (𝑆) ⊆ 𝑆 , so that 𝑆 ⊆ 𝑓 (𝑆). Thus, 𝑓 (𝑆) = 𝑆 ([60, Prop. 1.3.5]).

(⇐) This is a consequence of the Ryll-Nardzewski theorem for the theory of the Rado graph

(which can be shown to be 𝜔-categorical by a back-and-forth argument, using the extension

property of the Rado graph). But we give here a more direct proof, assuming 𝑛 = 1 for simplicity.

Suppose 𝐴 ⊆ V is a finite support for 𝑆 . Then, for any 𝑣, 𝑣 ′ ∈ V\𝐴, if 𝑣 and 𝑣 ′ have the same

connectivity to 𝐴, then they are either both in or not in 𝑆 since, by the extension property, we can

find an automorphism fixing 𝐴 and sending 𝑣 to 𝑣 ′. The set of vertices with the same connectivity

to 𝐴 as 𝑣 is definable, and there are only 2
|𝐴 |

such sets. Hence, 𝑆\𝐴 is a union of finitely many

definable sets, and as 𝑆 ∩𝐴 is definable (being finite), so is 𝑆 = (𝑆\𝐴) ∪ (𝑆 ∩𝐴). □

We note that 2
𝑋
in (18) is a canonical notion of internal powerset, from a categorical perspective.
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Proposition 36. RadoNom is a Boolean Grothendieck topos, with powerobject 2𝑋 in (18).

Proof notes. RadoNom can be regarded as continuous actions of Aut(Rado), regarded as a

topological group with the product topology, and then we invoke standard methods [43, Ex. A2.1.6].

It is also equivalent to the category of sheaves over finite graphs and embeddings with the atomic

topology. See [15, 16] for general discussion. □

6.3 Probability measures on Rado-nominal sets
The finitely supported sets 𝑆 ⊆ V can be regarded as ‘events’ to which we would assign a probability.

For example, if we already have vertices 𝑏 and 𝑐 , we may want to know the chance of picking a

vertex that forms a horn, and this would be the probability of the set in Ex. 34(a).

Definition 37. A sequence 𝑆1, 𝑆2 · · · ⊆ 𝑋 is said to be support-bounded if there is one finite set
𝐴 ⊆ V that supports all the sets 𝑆𝑖 .

A function 𝜇 : 2
𝑋 → [0, 1] is (internally) countably additive if for any support-bounded sequence

𝑆1, 𝑆2 · · · ⊆ 𝑋 of disjoint sets,

𝜇 (⊎∞𝑖=1 𝑆𝑖 ) = ∑∞
𝑖=1 𝜇 (𝑆𝑖 ).

A probability measure on a Rado-nominal set 𝑋 is an equivariant function 𝜇 : 2
𝑋 → [0, 1] that is

internally countably additive, such that 𝜇 (𝑋 ) = 1.

We remark that there are two subtleties here. First, we restrict to support-bounded sequences.

These are the correctly internalized notion of sequence in Rado-nominal sets, since they correspond

precisely to finitely-supported functions N→ 2
𝑋
. Second, we consider a Rado-nominal set to be

equipped with its internal powerset 2
𝑋
, rather than considering sub-𝜎-algebras.

Measures on the space of vertices. We define an internal probability measure (Def. 37) on the

space V of vertices, which, we will show, corresponds to the Erdős-Rényi graphon. Fix 𝛼 ∈ [0, 1],
the chance of an edge.

We define the measure 𝜈𝛼 of a definable set 𝑆 ∈ 2
V
as follows. Suppose that 𝑆 has support

{𝑎1, . . . , 𝑎𝑛}. We choose an enumeration of vertices (𝑣1, . . . , 𝑣2𝑛 ) in V (disjoint from {𝑎1, . . . , 𝑎𝑛})
that covers all the 2

𝑛
possible edge relationships that a vertex could have with the 𝑎𝑖 ’s. (For example,

𝑣1 has no edges to any 𝑎𝑖 , and 𝑣2𝑛 has an edge to every 𝑎𝑖 , and the other 𝑣 𝑗 ’s have the other possible

edge relationships.) Let:

𝜈𝛼 (𝑆) =
2
𝑛∑︁

𝑗=1

[𝑣 𝑗 ∈ 𝑆]
𝑛∏
𝑖=1

(
𝛼𝐸 (𝑣 𝑗 , 𝑎𝑖 ) + (1 − 𝛼) (1 − 𝐸 (𝑣 𝑗 , 𝑎𝑖 ))

)
. (19)

Proposition 38. The assignment given in (19) is an internal probability measure (Def. 37) on V.

Proof. The function 𝜈𝛼 is well-defined: it does not depend on the choice of 𝑣 𝑗 ’s (by Prop. 35), nor

on the choice of support (by direct calculation). It is equivariant, since for 𝜎 •𝑆 , a valid enumeration

of vertices is given by 𝜎 • 𝑣1, . . . 𝜎 • 𝑣2𝑛 . Also, 𝜈 (V) = 1, since V has empty support. Internal

countable additivity follows from the identity

[
𝑣 𝑗 ∈

⊎∞
𝑖=1 𝑆𝑖

]
=
∑∞

𝑖=1 [𝑣 𝑗 ∈ 𝑆𝑖 ]. □

Remark. The definitions and results of this section appear to be novel. However, the general idea

of considering measures on formulas which are invariant to substitutions that permute the variables

goes back to work of Gaifman [31]. The paper [2] characterizes those countably infinite graphs

that can arise with probability 1 in that framework; see [3] for a discussion of how Gaifman’s work

connects to Prop. 21.
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6.4 Nominal probability monads
Since RadoNom is a Boolean topos with natural numbers object (Prop. 36), we can interpret

measure-theoretic notions in the internal language of the topos, as long as they do not require the

axiom of choice. We now spell out the resulting development, without assuming familiarity with

topos theory. By doing this, we build new probability monads on RadoNom.

6.4.1 Finitely supported functions and measures. Let 𝑋 and 𝑌 be Rado-nominal sets. The set of all

functions 𝑋 → 𝑌 has an action of Aut(Rado), given by (𝜎 • 𝑓 ) (𝑥) = 𝜎-1 • (𝑓 (𝜎 • 𝑥)). The function
space [𝑋 ⇒ 𝑌 ] comprises those functions that have finite support under this action. Categorically,

this structure is uniquely determined by the ‘currying’ bijection, natural in 𝑍 :

RadoNom(𝑍 × 𝑋,𝑌 ) � RadoNom(𝑍,𝑋 ⇒ 𝑌 ).
(For example, the powerobject 2

𝑋
(§6.2) can be regarded as [𝑋 ⇒ 2], if we regard a set as its

characteristic function.)

In Def. 37, we focused on equivariant probability measures. We generalize this to finitely sup-

ported measures. For example, pick a vertex 𝑎 ∈ V. Then, the Dirac measure on V (i.e. 𝛿𝑎 (𝑆) = 1 if

𝑎 ∈ 𝑆 , and 𝛿𝑎 (𝑆) = 0 if 𝑎 ∉ 𝑆) has support {𝑎}.

Definition 39. For a Rado-nominal set 𝑋 , let P(𝑋 ) comprise the finitely supported functions
𝜇 : 2

𝑋 → [0, 1] that are internally countably additive, and satisfy 𝜇 (𝑋 ) = 1. This is a Rado-nominal set,
as a subset of [2𝑋 ⇒ [0, 1]]. Functions in P(𝑋 ) are called finitely supported probability measures.

6.4.2 Internal integration. We revisit some basic integration theory in this nominal setting. In tradi-

tional measure theory, one can define the Lebesgue integral of ameasurable function 𝑓 : 𝑋 → [0, 1]
by

∫
𝑓 (𝑥)𝜇 (d𝑥) = sup

∑𝑛
𝑖=1 𝑟𝑖𝜇 (𝑈𝑖 )where the supremum ranges over simple functions

∑
𝑖 𝑟𝑖 [− ∈ 𝑈𝑖 ]

with 𝑈𝑖 measurable in 𝑋 and bounded above by 𝑓 (§2.3.3). The same construction works in the

internal logic of RadoNom.

Note that the following does not mention 𝑓 being measurable: since 𝑋 is considered to have its

internal powerset 𝜎-algebra, finite-supportedness implies ‘measurability’ here.

Proposition 40. Let 𝜇 ∈ P(𝑋 ) be a finitely supported probability measure on 𝑋 . For any finitely
supported function 𝑓 : 𝑋 → [0, 1], the internally-constructed Lebesgue integral

∫
𝑓 (𝑥) 𝜇 (d𝑥) ∈ [0, 1]

exists. Moreover, integration is an equivariant map∫
: P(𝑋 ) × [𝑋 ⇒ [0, 1]] → [0, 1]

which preserves suprema of internally countable monotone sequences in its second argument.

Proof. If𝑈1, . . . ,𝑈𝑛 ⊆ 𝑋 are finitely supported, 𝑟1, . . . , 𝑟𝑛 ∈ [0, 1], and
∑

𝑖 𝑟𝑖 [− ∈ 𝑈𝑖 ] ≤ 𝑓 , then

by ordinary additivity of 𝜇, we have
∑
𝑟𝑖𝜇 (𝑈𝑖 ) ∈ [0, 1]. By ordinary real analysis, the supremum of

all such values exists and is in [0, 1]. For equivariance, recall that [0, 1] is equipped with the trivial

action of Aut(Rado). Use the fact that ∑𝑖 𝑟𝑖 [− ∈ 𝑈𝑖 ] ≤ 𝑓 if and only if

∑
𝑖 𝑟𝑖 [− ∈ 𝜎 •𝑈𝑖 ] ≤ 𝜎 • 𝑓 .

The last claim is the monotone convergence theorem internalized to RadoNom. □

6.4.3 Kernels and a monad. We can regard a ‘probability kernel’ as a finitely supported function

𝑘 : 𝑋 → P(𝑌 ). Equivalently, 𝑘 is a finitely supported function 𝑘 : 𝑋 × 2𝑌 → [0, 1] that is countably
additive and has mass 1 in its second argument.

(In traditional measure theory, one would explicitly ask that 𝑘 is measurable in its first argument,

but as we observed, finite-supportedness already implies it.)

As usual, probability kernels compose, and this allows us to regard them as Kleisli morphisms

for a monad (Def. 6), defined as follows.
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Definition 41. We define the strong monad P on RadoNom as follows.
• For a Rado-nominal set 𝑋 , let P(𝑋 ) comprise the finitely supported probability measures
(Def. 39).
• The unit of the monad 𝜂𝑋 : 𝑋 → P(𝑋 ) is the Dirac measure, 𝜂𝑋 (𝑥) (𝑆) = [𝑥 ∈ 𝑆].
• The bind (>>=) : P(𝑋 ) × (𝑋 ⇒ P(𝑌 )) → P(𝑌 ) is given by

(𝜇 >>= 𝑘) (𝑆) =
∫
𝑋

𝑘 (𝑥, 𝑆) 𝜇 (d𝑥).

6.4.4 Commuting integrals (Fubini). For measures 𝜇1 ∈ P(𝑋 ) and 𝜇2 ∈ P(𝑌 ), the monad structure

allows us to define a product measure

𝜇1 ⊗ 𝜇2 =
(
𝜇1 >>= (𝜆𝑥. 𝜇2 >>= 𝜆𝑦. 𝜂 (𝑥,𝑦))

)∫
𝑓 (𝑥,𝑦) (𝜇1 ⊗ 𝜇2) (d(𝑥,𝑦)) =

∫ ∫
𝑓 (𝑥,𝑦) 𝜇2 (d𝑦) 𝜇1 (d𝑥).

(20)

Although this interated integration is reminiscent of the traditional approach, in general we cannot

reorder integrals (‘Fubini does not hold’). For example, given two measures 𝜈𝛼 and 𝜈𝛽 for 𝛼 ≠ 𝛽

and 𝑓 being the characteristic function of the set {(𝑥,𝑦) : 𝐸 (𝑥,𝑦)} ⊆ V2
, we have∫ ∫

[𝐸 (𝑥,𝑦)] 𝜈𝛼 (d𝑦) 𝜈𝛽 (d𝑥) =
∫

𝛼 𝜈𝛽 (d𝑥) = 𝛼

≠ 𝛽 =

∫
𝛽 𝜈𝛼 (d𝑦) =

∫ ∫
[𝐸 (𝑥,𝑦)] 𝜈𝛽 (d𝑥) 𝜈𝛼 (d𝑦).

(21)

However, it does hold when we consider only copies of the same measure.

Proposition 42. For 𝜈𝛼 ∈ P(V) as in (19), 𝜈𝛼 commutes with 𝜈𝛼 . That is, for any finitely supported
𝑓 : V × V→ [0, 1],∫ ∫

𝑓 (𝑥,𝑦) 𝜈𝛼 (d𝑦) 𝜈𝛼 (d𝑥) =
∫ ∫

𝑓 (𝑥,𝑦) 𝜈𝛼 (d𝑥) 𝜈𝛼 (d𝑦).

Proof notes. By Prop. 35 and 40, it suffices to check on the indicator functions of definable

subsets of V2
. The indicators of sets {(𝑥,𝑦) | Φ(𝑥,𝑦)} where Φ(𝑥,𝑦) is a disjunction of 𝑥 = 𝑦, 𝑥 = 𝑎,

or 𝑦 = 𝑎 for some 𝑎 ∈ V are seen to have integral 0 on both sides. The remaining possibilities can be

reduced to the case where Φ𝐴,𝜙,𝜓,𝜖 (𝑥,𝑦) is (𝑥,𝑦 ∉ 𝐴) ∧ (𝑥 ≠ 𝑦) ∧ (𝐸 (𝑥,𝑦) ↔ 𝜖) ∧∧𝑎∈𝐴 (𝐸 (𝑎, 𝑥) ↔
𝜙𝑎) ∧ (𝐸 (𝑎,𝑦) ↔ 𝜓𝑎) where 𝐴 ⊆ V is a finite set, 𝜖 ∈ {⊥,⊤}, and 𝜙,𝜓 ∈ {⊥,⊤}𝐴. This formula

corresponds to choosing a two-vertex extension of the finite graph spanned by 𝐴 ⊆ V. Intuitively,
the two double integrals correspond to the two alternative two-step computations of the conditional

probability of extending the graph 𝐴 to this extension according to which of the two vertices is

sampled first, and indeed both evaluate to 𝛼𝑘 (1−𝛼)2 |𝐴 |+1−𝑘 where 𝑘 = [𝜖] +∑𝑎∈𝐴 ( [𝜙𝑎] + [𝜓𝑎]). □

Remark. In traditional measure theory, iterated integrals are defined using product 𝜎-algebras.

Here we have not constructed product 𝜎-algebras, but rather always take the internal powerset as

the 𝜎-algebra. This allows us to view all the definable sets as measurable on V𝑛 (Prop. 35), which is

very useful. We remark that alternative product spaces also arise in non-standard approaches to

graphons (see [73, §6] for an overview), and also in quasi-Borel spaces [35] for different reasons.

6.4.5 A commutative monad. We now use Prop. 42 to build a commutative affine submonad P𝛼 of

the monad P, which we will use to model the graph interface for the probabilistic programming

language. With Prop. 36, we use the following general result.

Proposition 43 (e.g. [47, 49]). Let T be a strong monad on a Grothendieck topos. Consider a
family of morphisms {𝑓𝑖 : 𝑋𝑖 → T (𝑌𝑖 )}𝑖∈𝐼 .
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• The least subfunctor T𝑓 ⊆ T through which all 𝑓𝑖 factor forms a strong submonad of T .
• If the morphisms 𝑓𝑖 all commute with each other, then T𝑓 is a commutative monad (Def. 7).

With this in mind, fixing a measure 𝜈𝛼 as in (19), we form the least submonad P𝛼 of P induced

by the morphisms

𝜈𝛼 : 1→ P(V) bernoulli : [0, 1] → P(2) (22)

where bernoulli(𝑟 ) = 𝑟 · 𝜂 (0) + (1 − 𝑟 ) · 𝜂 (1).

Corollary 44. The least submonad P𝛼 of the probability monad P induced by the morphisms in
(22) is a commutative affine monad (Def. 7).

Proof notes. It is easy to show that bernoulli commutes with every morphism 𝑋 → P(𝑌 ).
Moreover, 𝜈𝛼 commutes with itself (Prop. 42). Finally, P𝛼 is affine since P is. □

6.5 Summary and interpretation
Fix 𝑝 ∈ [0, 1]. We induce an internal measure 𝜈𝛼 on the vertices of the Rado graph as explained in

(19); and build a commutative submonad P𝛼 of P. We can then interpret the graph probabilistic

programming language. We interpret types as Rado-nominal sets:

JboolK = 2 JvertexK = V JunitK = 1 J𝐴1 ∗𝐴2K = J𝐴1K × J𝐴2K. (23)

We interpret typed programs Γ ⊢ 𝑡 : 𝐴 as Kleisli morphisms

JΓK→ P𝛼 (J𝐴K)
i.e. internal probability kernels JΓK× 2J𝐴K → [0, 1]. Sequencing (let) is interpreted using the monad

structure, with JnewK : 1→ P𝛼 (V) and JedgeK : V × V→ P𝛼 (2) as
Jnew()K = 𝜈𝛼 JedgeK(𝑣,𝑤) = 𝜂 (𝐸 (𝑣,𝑤)) (24)

Corollary 45. Consider the interpretation in Rado-nominal sets ( (23)– (24)). If we form the
sequence of random graphs in (16), then these correspond to the Erdős-Rényi graphon.

Proof notes. The semantics interprets ground types as finite sets with discrete Aut(Rado)
action – in which case internal probability kernels correspond to stochastic matrices, agreeing with

FinStoch. Thus, the theory is Bernoulli-based. To see that the graphon arises, consider for instance

when 𝑛 = 2, we have:

J𝑡2K(★) =
∫ (
[𝐸 (𝑥1, 𝑥1)], [𝐸 (𝑥1, 𝑥2)]
[𝐸 (𝑥2, 𝑥1)], [𝐸 (𝑥2, 𝑥2)]

)
(𝜈𝛼 ⊗ 𝜈𝛼 ) (d(𝑥1, 𝑥2))

for 𝑡2 as in (16), and therefore

J𝑡2K =
(

𝛿0, bernoulli(𝛼)
bernoulli(𝛼), 𝛿0

)
: P(24)

For general 𝑛, this corresponds to the random graph model 𝑝𝑊𝛼 ,𝑛 for the Erdős-Rényi graphon𝑊𝛼 .

□

7 CONCLUSION
Summary. We have shown that equational theories for the graph interface to the probabilistic

programming language (Ex. 1) give rise to graphons (Theorem 23). Conversely, every graphon

arises in this way. We showed this generally using an abstract construction based on Markov

categories (Corollary 26) and methods from category theory [34, 36]. Since this is an abstract

method, we also considered two concrete styles of semantic interpretation that give rise to classes

of graphons: traditional measure-theoretic interpretations give rise to black-and-white graphons



1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Probabilistic programming interfaces for random graphs 25

(Prop. 28), and an interpretation using the internal probability theory of Rado-nominal sets gives

rise to Erdős–Rényi graphons (Corollary 45).

Further context, and future work. The idea of studying exchangeable structures through program

equations is perhaps first discussed in the abstract [70], whose §3.2 ends with an open question

about semantics of languages with graphs that the present paper addresses. Subsequent work

addressed the simpler setting of exchangeable sequences and beta-bernoulli conjugacy through

program equations [71], and stochastic memoization [45]. Beyond sequences [71] and graphs (this

paper), a natural question is how to generalize to arbitrary exchangeable interfaces (e.g. [1, 19, 44]).

This paper has focused on a very simple programming language (§2.1). Several implementations

of probabilistic programming languages do support various Bayesian nonparametric primitives

based on exchangeable sequences, partitions, and relations (e.g. [22, 33, 50, 59, 68, 76]). In particular,

the ‘exchangeable random primitive’ (XRP) interface [4, 77] provides a built-in abstract data type

for representing exchangeable sequences. This aids model design by its abstraction, but also aids

inference performance by clarifying the independence relationships. Although the contribution in

this paper is theoretical, our results show that the graph interface of Example 1(3) is canonical.

Aside from practical inference performance, we can ask whether representation and inference

are computable. For the simpler setting of exchangeable sequences, this is dealt with positively

by [26, 27]. The question of computability for graphons and exchangeable graphs is considerably

subtler, and some standard representations are noncomputable [6] (see also [5]). This suggests

several natural questions about whether certain natural classes of computable exchangeable graphs

can be identified by program analyses in the present context.
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