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LazyPPL: Monads and laziness for Bayesian modelling

SWARAJ DASH, YOUNESSE KADDAR, HUGO PAQUET, and SAM STATON,
Department of Computer Science, University of Oxford, UK

We introduce LazyPPL (Lazy Probabilistic Programming Library), a Haskell library for Bayesian modelling that

supports laziness. This is intended to experiment with recent developments in ‘synthetic measure theory’, such

as quasi-Borel spaces and Markov categories. The idea is that types are spaces, and programs are measures on

those spaces. As we demonstrate through numerous examples, laziness is a very natural idiom for statistical

modelling. To perform Bayesian inference with these examples reasonably efficiently, we introduce two new

inference methods that are based on the Metropolis-Hastings-Green family of algorithms, but adapted to

laziness.

1 INTRODUCTION
In this paper we analyze the crucial role that laziness can play in expressive Bayesian modelling.

To this end we provide two new Metropolis-Hastings algorithms (§1.4, §5, §7) that work in a lazy

setting, and demonstrate their expressive power through a wealth of examples (§3, §6; source code

is provided in supplementary material). As we now explain, our development is motivated by new

compositional methods in measure theory, such as quasi-Borel spaces and Markov categories (§4),

and we bring these together with recent practical advances on probabilistic programming (see §8

for a summary).

1.1 Monte Carlo methods, Bayesian models, and unnormalized measures
It is often said that Monte Carlo methods are the reason for the explosion in practical Bayesian

statistics over the past 30 years (e.g. [20, §1.1], [21, §1.4]). One account ofMonte Carlomethods is that

they are methods for sampling from a probability distribution that is specified as an unnormalized
measure, that is, a measure that is only specified up to an unknown normalizing constant (e.g. [20,

71]). This matches the three primitive aspects of Bayesian statistics, which are:

• prior — a probability measure;

• likelihood — often expressed by a density, or weight, contributing to the unnormalized aspect

of the measure;

• posterior — a probability measure that is proportional to the product of the likelihood and

the prior, which is what the Monte Carlo method provides samples from.

Our aim here is to explore the role of laziness in building and composing these measures. Our

motivation comes from two directions: practical and theoretical.

On the practical side, probabilistic programming languages for Bayesian modelling (such as

Bugs [41], Church [24], Stan [8] and others) can often be regarded as programming languages

describing unnormalized measures, that are endowed with efficient Monte Carlo samplers.

On the theoretical side, researchers have recently proposed synthetic probability theory [10, 16]

and synthetic measure theory [29, 38, 61], with the aim of developing compositional structures in

measure theory. There are various aims in that work, some axiomatic, and some seeking to sidestep

cumbersome issues with measure theory, such as the absence of function spaces and of a strong

monad of measures (see §4). In this way, probabilistic programming can be viewed as a practical
synthetic measure theory, with compositionality built in, and where types are spaces, and programs

Authors’ address: Swaraj Dash, swaraj.dash@cs.ox.ac.uk; Younesse Kaddar, younesse.kaddar@cs.ox.ac.uk; Hugo Paquet,

hugo.paquet@cs.ox.ac.uk; Sam Staton, sam.staton@cs.ox.ac.uk,

Department of Computer Science, University of Oxford, UK.
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Fig. 1. (a) Four samples from a 1D Poisson point process with rate 1, with viewport restricted to [0, 4]. (b) The
law for affine monoidal categories in string diagram form. (c) Visualizing dataflow in a lazy infinite process.

are suitably good measures on the spaces. By exploring fully expressive probabilistic programming

languages, we are exploring the abstract and unusual spaces of synthetic measure theory.

1.2 Practical illustration: the Poisson process
To illustrate further on the practical side, we briefly consider a ‘non-parametric’ model now: the

one-dimensional homogenous Poisson point process. This is a random countable collection of

points on the real line, such that within any finite interval [𝑎, 𝑏] the expected number of points is

proportional to (𝑏 − 𝑎), and the number of points in disjoint regions is independent. Some draws

from a Poisson point process are shown in Figure 1 (a). A Poisson point process is easy to define

using laziness, and an implementation is given in §3.1.2.

Of course, the pictures in Figure 1 (a) each show a finite number of points, but this is because we

have constrained the viewport to a finite window. In practice we may want to use the point process

as part of a larger model (and in Section 3.1 we use it as part of a regression problem) and then

it is less appropriate to truncate it to an arbitrary viewport in advance. This is often the case in

statistical models, as in other areas of programming: if we just focus on running whole programs,

we lose perspective of the conceptual and practical building blocks. We give other examples of

non-parametric processes in Sections 3.2 (Clustering and Chinese Restaurant), 6.4 (Wiener), 6.5

(Indian Buffet), and 6.6 (Mondrian Process).

1.3 Theoretical aspects: affine monoidal structure and synthetic spaces
To illustrate the theoretical side, we recall that synthetic foundations of probability theory are often

based on affine monoidal categories or affine monads (e.g. [10, 13, 16, 17, 32, 62]). Here affine means

that the monoidal unit is terminal, shown diagrammatically in Figure 1 (b). In integral notation,

this amounts to the equation

∫
1 𝜇 (d𝑥) = 1 for probability measures 𝜇. We can regard the diagram

as a dataflow diagram. To see where laziness comes in, we regard the Poisson point process again,

now as a dataflow diagram (Fig. 1 (c)). The cloud represents whatever happens next, and intuitively,

those morphisms that are not used in what follows need never be inspected, and in that case the

process can likely be truncated. Thus, affine monoidal categories are related to laziness.

When we regard types in probabilistic programming languages as spaces of synthetic measure

theory, we see spaces from non-parametrics, such as function spaces and infinite lists, behaving

intuitively and straightforwardly, even though they can be subtle from the traditional measure-

theoretic approach. Moreover, we see new spaces, such as an abstract space of the Tables of the

Chinese Restaurant Process (§3.2.3), which encapsulates crucial aspects of exchangeability from

non-parametrics (see also [65, 66]).



99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

LazyPPL: Monads and laziness for Bayesian modelling 111:3

1.4 New Metropolis-Hastings-based inference algorithms
To experiment with these examples involving laziness, we introduce two new inference algorithms

that build on earlier inference methods for probabilistic programming (e.g. [76]). These take as an

argument a program describing an unnormalized measure, and produce a stream of samples as

output.

Traditional Monte Carlo algorithms assume a finite-dimensional state space; sometimes they

can adapt to changing dimensions (e.g. [27]). But in a purely lazy setting, we cannot necessarily

ask for the dimension of the state space without triggering suspended execution paths. We provide

two new correct instantiations of the Metropolis-Hastings-Green algorithm:

• Our first algorithm (§5) is purely lazy. It operates lazily over the infinite-dimensional state

space, mutating different parts at random. In fact, it is so lazy that it only does anything

when a plotting or printing routine is invoked, and even then, it will typically only perform

the inference needed for the viewport.

• Our second algorithm (§7) uses Haskell internals (ghc-heap) to identify which dimensions

are actually being used in a given run of the program, and changes exactly one of these

dimensions, chosen at random. This is inspired by [76], but adapted to the lazy setting.

We can show that these algorithms are correct (via Theorems 5.2, 7.1, 5.3). The structure of our

implementation is based on ideas from quasi-Borel spaces [29]. In particular, we work with a fixed

basic probability space Ω, here instantiated to rose trees (§5.2). We base our implementation on

two monads from quasi-Borel spaces: Prob, for probability measures, which is affine hence lazy,

and Meas, for unnormalized measures, which are not affine. While both algorithms are useful for

prototyping, no general purpose inference algorithm should be expected to perform optimally on

all models, and we discuss issues in Sections 5.4 and 7.2.3. That said, our simple general purpose

algorithms are actually very useful for the numerous examples we consider in this paper to illustrate

laziness in probabilistic programming (§3, §6).

Note. We have benefited from many helpful discussions and from presenting this work in

numerous venues. Full acknowledgements in non-anonymous version.

2 MONADS FOR PROBABILITY AND MEASURE
The idea of Monte Carlo based inference is that we define an unnormalized measure, by weighting

different random choices, and then Monte Carlo inference provides samples from the normalized

form of this measure. We encapsulate this in programming terms by using two monads, describing

normalized and unnormalized measures.

• Aprobabilitymonad Prob (often in green font) so that (Prob a) intuitively contains probability

measures on a. This supports an operation

uniform :: Prob RealNum

which is thought of as providing a fresh sample uniformly distributed between 0 and 1. (We

use RealNum as a synonym for Double, to emphasise the view of types as spaces.) The ‘noise

outsourcing lemma’ states that this uniform draw can be used as a seed for any distribution.

For example, we can draw from a standard normal distribution by

do { x ← uniform ; return (probit x) }

where the probit function is shown in Figure 2 (a). (LazyPPL comes included with implemen-

tations of many useful probability measures on RealNum, such as normal, beta, exponential,

and also measures on other types such as the bernoulli distributions on Bool.)
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Fig. 2. From left to right: (a) The probit function (inverse cumulative distribution function for the standard
normal distribution); then the densities of the (b) standard normal distribution; (c) exponential distribution
with rate 1; (d) beta (2,2) distribution.

• Ameasures monad Meas (often in red font), so that (Meas a) intuitively contains unnormalized

measures on a. This supports two operations:

– sample :: Prob a → Meas a, which draws a sample from a probability distribution;

– score :: RealNum → Meas (), which weights this run of the program by a given weight.

The score operation is often used with a probability density, to incorporate the likelihood

in a Bayesian scenario. One can use all kinds of distributions for observations, using their

densities (e.g. Fig. 2 (b,c,d)). For example, to incorporate a Bayesian observation of data point x

from a normal distribution with mean mu and standard deviation sigma, we write

score (normalPdf mu sigma x)

We provide worked examples using these operations in Section 3. For now, we discuss these

operations abstractly.

2.1 Desiderata for probability and measures monads
A strong monad is a structure with a bind and return

(>>=) :: m a → (a → m b) → m b return :: a → ma.

This allows us to sequence operations, and Haskell provides the do notation for this. These should

satisfy associativity and identity laws (e.g. [43]). Ideally, the measures monad should also satisfy

commutativity (e.g. [36]): for mx :: m a and my :: m a,

mx >>= \x → my >>= \y → (x,y) = my >>= \y → mx >>= \x → (x,y) (1)

The probability monad should satisfy commutativity and also affinity (e.g. [31, 37]): if mx :: m a

then:

mx >>= \x → return () = return () (2)

In programming terms, affinity is a substantial requirement: it means that in evaluating mx >>= f

we need not strictly evaluate mx, rather we ought to treat it lazily. Thus a crucial fundamental axiom

for probability theory corresponds to the concept of laziness. (See also Fig. 1 (b,c).)

Aside: Understanding in terms of Kleisli categories. If we start from a cartesian closed category

C, a strong monad induces another category, a Kleisli category, with a functor 𝐽 : C → Kl(m).
When m is commutative, the Kleisli category has a monoidal structure and 𝐽 preserves it. When m is

moreover affine, the monoidal structure has a terminal unit. We note that monoidal categories with

a terminal unit have been used as a synthetic axiomatization of probability theory (e.g. [10, 16, 18]).

In this way, programming with a commutative affine monad is an equivalent way of reasoning

about synthetic probability theory (see also [69]).
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2.2 Candidate monads
In Section 4 we discuss our probability monads in detail. For now, we remark on some difficulties,

and suggest some well known monads that form reasonable candidates.

2.2.1 Candidate probability monads. The following conventional monads might be regarded as

probability monads:

• The state monad (s → (a, s)) with state s = Stream RealNum. The idea is that this is to be

run with a stream of random seeds. Then uniform takes the head of the stream and puts the

tail of the stream back in to the state.

• The continuations monad ((a → r) → r) with return type r = RealNum. Then uniform finds

the expected value of its argument somehow, for example by calling it with many values and

taking the mean average.

These monads do not satisfy commutativity or affinity. However, if we move to a semantic setting,

we can restrict the continuations monad to the integration operators (§2.2.3) via the Giry monad.

2.2.2 Candidate measures monads. The following conventional monads might be regarded as

measures monads:

• If m is a probability monad, then the writer monad transformer WriterT RealNum m a is a

measure monad. Here we accumulate real numbers by multiplication:

((r,mx) >>= f) = mx >>= \x → (r * (fst (f x)), snd (f x))

This writer monad is commutative if m is, because multiplication of real numbers is commu-

tative.

• The continuations monad ((a → r) → r) with return type r = RealNum can be regarded as a

measures monad. Let score :: RealNum → Meas () be \r k → r * k ().

Although we would like to think of the measures monad Meas as a monad of measures, there is

no known strong monad of unnormalized measures on the category of measurable spaces. As we

explain in Section 4, quasi-Borel spaces form a good semantic setting for monads of measures.

2.2.3 Measure-theoretic monads. Outside of programming, the Giry monad, which can be defined

on categories of measurable spaces and metric spaces (e.g. [22, 51]), is commutative and affine. We

now recall some rudiments of measure theory, which is a foundation that explains the apparent

paradox of sampling from an uncountable space such as [0, 1].

Definition 2.1. Ameasurable space (𝑋, Σ𝑋 ) is a set𝑋 togetherwith a set Σ𝑋 of ‘measurable subsets’

of 𝑋 , which must be a 𝜎-algebra, i.e. closed under countable unions and complements. A measure

on a space (𝑋, Σ𝑋 ) is a function 𝜇 : Σ𝑋 → [0,∞] that is 𝜎-additive (𝜇 (
⊎∞

𝑖=1𝑈𝑖 ) =
∑∞

𝑖=1 𝜇 (𝑈𝑖 )); it is
a probability measure if 𝜇 (𝑋 ) = 1. A function 𝑓 : (𝑋, Σ𝑋 ) → (𝑌, Σ𝑌 ) is measurable if 𝑓 −1 (𝑈 ) ∈ Σ𝑋
for all𝑈 ∈ Σ𝑌 .

A key measurable space is (R, ΣR), where ΣR comprises the Borel sets, the least 𝜎-algebra

containing the open intervals. The unit interval ( [0, 1], Σ [0,1]) is a subspace, and the uniform

measure on [0, 1] is a measure that assigns to each open interval its length. For any measure 𝜇 on

(𝑋, Σ𝑋 ), we can find the expected value of any measurable function 𝑓 : (𝑋, Σ) → (R, ΣR), notated∫
𝑓 (𝑥) 𝜇 (d𝑥) ∈ [0,∞], the Lebesgue integral of 𝑓 with respect to 𝜇. Two measures are the same if

they induce the same integration operator.

For any measurable space (𝑋, Σ𝑋 ), the set of probability measures 𝑃𝑋 can be made into a

measurable space, with Σ𝑃𝑋 the least 𝜎-algebra making

∫
𝑓 (𝑥) [−](d𝑥) : 𝑃𝑋 → [0,∞] measurable

for all 𝑓 : 𝑋 → R. This is actually a monad, with 𝜇 >>= 𝑓 the measure which is the integration



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

111:6 Swaraj Dash, Younesse Kaddar, Hugo Paquet, and Sam Staton

operator taking 𝑔 : 𝑌 → R to the iterated integral∫
𝑔(𝑦) (𝜇 >>= 𝑓 ) (d𝑦) =

∫ ∫
𝑔(𝑦) 𝑓 (𝑥, d𝑦) 𝜇 (d𝑥).

The category of measurable spaces is not cartesian closed, a point we revisit in Section 4. But we

can actually still interpret the commutativity (1) and affine laws (2) for the Giry monad, which

respectively amount to Fubini’s theorem∫ ∫
𝑓 (𝑥,𝑦) 𝜇𝑌 (d𝑦) 𝜇𝑋 (d𝑥) =

∫ ∫
𝑓 (𝑥,𝑦) 𝜇𝑋 (d𝑥) 𝜇𝑌 (d𝑦)

and the unity of a probability measure ∫
1mx (d𝑥) = 1

However, for arbitrary measures, iterated integration does not work, and Fubini does not hold

(see [64] for a programming angle on this). This is arguably because of obscure measures such

as the counting measure which have no role in programming or Monte Carlo simulation. It is an

open problem to find a commutative monad of measures on the category of measurable spaces that

includes the one-point measures and the probability measures. We revisit this in Section 4.3.

2.2.4 Running probabilistic programs. The key idea of probabilistic programming is to describe

an unnormalized measure, and then to use an inference procedure to simulate draws from a nor-

malized measure. For the examples in this paper, it is sufficient to have an inference procedure

infer :: Meas a → IO [a]which takes an unnormalized measure and outputs a stream of samples

from it (§4.4.1, §5, §7). As an aside, we note that in general this might take the form of a func-

tion normalize :: Meas a → Prob a. But the practicalities of normalize and ‘nested inference’ are

difficult and not especially widely used (although see e.g. [26, 70, 79]).

3 EXAMPLES TAKING ADVANTAGE OF LAZINESS
We now give examples of probabilistic programs using the interface in Section 2. Where LazyPPL

comes into its own is that the models can involve types, regarded as spaces, and structures that

have unbounded or infinite dimension. We stress that the models here have been dealt with before

in other probabilistic programming languages. Our aim is to emphasise the especially natural way

of expressing them in LazyPPL, using Haskell’s types and laziness.

3.1 Regression
We begin with 1-dimensional Bayesian regression. The problem of regression is that we have

some data points observed, and we want to know which function generated those points. Bayesian

regression does not produce one single ‘line of best fit’, but rather a probability distribution over

the functions that might have generated the points.

3.1.1 Linear regression. We start with a non-lazy model: linear regression. Following the Bayesian

tradition, we start with a fairly uninformative prior distribution over linear functions, incorporate

the likelihood of the observations, and produce a posterior by Monte Carlo simulation.

Our prior is as follows. The slope a and intercept b are both drawn from normal distributions.

linear :: Prob (RealNum → RealNum)

linear = do a ← normal 0 3

b ← normal 0 3

let f x = a*x + b

return f
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(a) (b) (c)

Fig. 3. Bayesian regression in LazyPPL for the data set indicated by the dots. We illustrate the posteriors
starting from three different priors on the function space. From left to right: (a) linear (§3.1.1), (b) piecewise
linear (§3.1.2), and Wiener (see §6.4).

Our data points are not colinear, so we do not observe the likelihood of the data points being exactly

f x. Rather, we use a likelihood for the points being normally distributed around f x, for some

small standard deviation. To this end we define a general purpose function regress, which takes a

standard deviation sigma, a prior over the function space prior, and a list of (x,y) observations

dataset.

regress :: RealNum → Prob (a → RealNum) → [(a,RealNum )]

→ Meas (a → RealNum)

regress sigma prior dataset =

do f ← sample prior

forM dataset $ \(x,y) → score $ normalPdf (f x) sigma y

return f

So linear regression in particular is achieved by regress 0.1 linear dataset, see Figure 3 (a).

3.1.2 Piecewise regression. The function regress can be used for more involved kinds of regression.

We consider piecewise linear regression, where the prior is over piecewise linear functions. We

define a function that will splice together different draws from a random function given a random

sequence of change points:

splice :: Prob [RealNum] → Prob (RealNum → RealNum)

→ Prob (RealNum → RealNum)

The sequence of change points can be infinite, so the function can have an infinite number of pieces,

but this is handled lazily.

In general a random collection of points is called a point process. A simple example of an infinite

point process is a Poisson point process on the positive reals, generated by repeatedly sampling

steps from an exponential distribution with a fixed rate (see also Figure 1 (a)):

poissonPP :: RealNum → RealNum → Prob [RealNum]

poissonPP lower rate = do step ← exponential rate

let x = lower + step

xs ← poissonPP x rate

return (x : xs)

We can perform piecewise linear regression using a Poisson point process, for example via

regress 0.1 (splice (poissonPP 0 0.2) linear) dataset.

Key point of laziness. Notice that the probability measure splice (poissonPP 0 0.2) linear has

infinite dimension, because the change points continue across the real line. But LazyPPL has no

problem with this. Intuitively, it is all fine because the data set is finite and the plotting routine

only inspects a finite viewport, and so the built-in laziness avoids any infinite computation.
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. . .

Beta(1,α)

0 1

...

Fig. 4. From left to right: (a) Dirichlet process clustering by stick-breaking in LazyPPL; (b) Program induction
via Bayesian regression in LazyPPL (§6.2) (the second inferred program is abbreviated since it is quite long)

As an aside, we point out the beauty of probabilistic programming for modular model building: it

is very easy to switch the Poisson process for a different point process, or to use piecewise constant
regression, and so on.

3.2 Clustering
We now illustrate clustering in LazyPPL. For a set of data points, clustering is the problem of finding

the most appropriate partition into clusters. Taking advantage of laziness, we can allow for an

unbounded number of clusters.

3.2.1 Stick-breaking. In Bayesian clustering, we have a prior distribution over possible partitions

of the data into clusters. We implement this using stick-breaking, where we break the unit interval

[0, 1] into an infinite number of sticks, each representing a cluster, and the size of the stick is the

proportion of points in that cluster. Stick-breaking is easy to define lazily. At each step we break

off a portion of the remaining interval according to a beta distribution:

stickBreaking :: RealNum → RealNum → Prob [RealNum]

stickBreaking 𝛼 lower =

do r ← beta 1 𝛼

let v = r * (1 - lower)

vs ← stickBreaking 𝛼 (v + lower)

return (v : vs)

Given the broken sticks, we can organise the data into clusters. For every data point, we uniformly

draw a value from [0, 1] and use the corresponding stick as a cluster assignment (Fig. 4). Thus we

have a prior over cluster assignments for any data set:

assignClusters :: RealNum → [a] → Prob [(a, Int)]

We then need to incorporate the likelihood of a particular clustering. One way is to assign a mean

value to each cluster, and assume that the data points in this cluster follow a normal distribution

around that mean. More abstractly, we define:

cluster :: [a] → (Prob b) → (b → a → RealNum) → Meas [(a, Int)]

Our clustering model has the form (cluster dataset base likelihood). The program partitions

the data into random clusters via stick-breaking, draws a value from base for each cluster, and

incorporates a score for each data point using likelihood.
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3.2.2 Stochastic memoization. The previous clustering example (§3.2.1) can be implemented with

stochastic memoization. In standard programming, memoization is a form of laziness where a

function caches previous results instead of re-calculating [42]. In functional probabilistic program-

ming, memoization also becomes a powerful method for building infinite-dimensional probability

measures (e.g. [24, 54, 77]). In LazyPPL, we consider a typed memoization function

memoize :: (a → Prob b) → Prob (a → b)

As the types make clear, memoize converts a parameterized distribution p into a random function

(memoize p), informally by sampling once from (p x) for every (x :: a). Memoize can often be

defined in terms of laziness. For example, for positive integers, we can define

memoize :: (Int → Prob b) → Prob (Int → b)

memoize f = do

ys ← mapM f [0..]

return $ \x → ys !! x

In practice, we actually define this more efficiently using tries (c.f. [30]). Not every type a supports

memoization, and we define a type class MonadMemo for those that do.

In the clustering example, we can use memoization to assign a mean to each cluster. One

implementation of our clustering model above is:

cluster dataset base likelihood = do

assignment ← sample $ assignClusters 0.3 dataset

means ← sample $ memoize $ \c → base -- lazily map values to clusters

mapM (\(x, c) → score $ likelihood (means c) x) assignment

return assignment

The memoized function means is an infinite-dimensional object. There is no bound on the number

of clusters, and LazyPPL computes only the dimensions we need.

3.2.3 Chinese restaurant process and abstract data types. The random partition of the data set

arising from the stick-breaking construction above is called a Chinese restaurant process (CRP)
(e.g. [21]). The idea is to think of data points as customers arriving into a restaurant. Each customer

is assigned a table, and so tables correspond to clusters.

The stick-breaking construction is only one possible implementation of the CRP. There is also

no requirement that tables should be represented as integers. We find it useful to encapsulate our

representations using abstract data types:

newtype Restaurant = R [RealNum]

newtype Table = T Int deriving (Eq,MonadMemo Prob)

These come with constructors:

newRestaurant :: RealNum → Prob Restaurant

newCustomer :: Restaurant → Prob Table

For our specific implementation, (newRestaurant𝛼) just performs the stick-breaking, and (newCustomer r)

draws a random stick with probability equal to its length.

This abstract interface prevents the programmer from accessing the underlying representation.

This is important, because wewant to remove the artificial ordering on clusters to preserve statistical
exchangeability: the idea that data points can be considered in any order and the distribution of the

partition does not change (e.g. [65, 66]). Although the implementation of Table is hidden, notice

that we retain the fact that it supports memoization.

With this interface, the cluster assignment function has a clear implementation:
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assignClusters :: RealNum → [a] → Prob [(a, Table)]

assignClusters 𝛼 dataset = do

r ← newRestaurant 𝛼

mapM (\x → (x, newCustomer r)) dataset

Regression and clustering are widely studied problems, but we already see the power of laziness

and types at this level. In LazyPPL we can seamlessly manipulate complex or infinite-dimensional

distributions. We will explore this with more advanced examples in Section 6.

linear :: Prob (RealNum → RealNum)

linear = do a ← normal 0 3

b ← normal 0 3

let f x = a*x + b

return f

4 IMPLEMENTATION OF THE PROBABILITY MONADWITH INFINITE TREES
We now introduce and motivate our implementation of probability.

Let Ω be a set of random seeds. A randomized function between sets 𝑋 and 𝑌 is a function

𝑓 : 𝑋 × Ω → 𝑌 , that depends on the random seed. Suppose that we have a method for splitting

random seeds, 𝛾 : Ω → Ω × Ω (e.g. [67]). Then we can compose randomized functions

𝑓 : 𝑋 × Ω → 𝑌 𝑔 : 𝑌 × Ω → 𝑍 (𝑔 ◦ 𝑓 ) : 𝑋 × Ω → 𝑍

by (𝑔 ◦ 𝑓 ) (𝑥,𝜔) = 𝑔(𝑓 (𝑥,𝜔1), 𝜔2), where 𝛾 (𝜔) = (𝜔1, 𝜔2). This is the essence of our treatment of

probability. However, put plainly like this, composition is not associative. To achieve associativity,

we equate certain randomized functions, but to do this we need to talk about expected values,

measures and integration.

By currying, we can regard a function 𝑓 : 𝑋 × Ω → 𝑌 as a function 𝑋 → 𝑌Ω
. Once we equate

certain functions, 𝑌Ω
becomes a monad, and we are thus in the setting of programming with

monads [43].

We now recall the rudiments of measure theory (§4.1), and then formalize associativity of

composition (§4.2). We also treat unnormalized measures (§4.3).

4.1 Rudiments of quasi-Borel spaces
In Section 2.2 we recalled the notions of measurable space and measure. As we noted, this does not

support function spaces, nor is it known to support commutative monads of measures. We now

recall a setting that does support both of these things: quasi-Borel spaces.

To recall the definitions, we need to recall the notion of standard Borel space. In fact, we do not

need the traditional definition; the following characterization will suffice.

Proposition 4.1 (e.g. [33]). (1) A standard Borel space is a measurable space (𝑋, Σ𝑋 ) that is
either (a) countable, with Σ𝑋 the powerset of 𝑋 , or (b) measurably isomorphic to (R, ΣR).

(2) Any measurable subspace of R is standard Borel (e.g. [0, 1] is standard Borel).
(3) Standard Borel spaces are closed under countable products.

Following our introductory discussion, let Ω be a fixed uncountable standard Borel space (typi-

cally Ω = R, but we also consider Ω = [0, 1]N∗ ). We now recall:

Definition 4.2 ([29]). A quasi-Borel space (𝑋,𝑀𝑋 ) comprises a set 𝑋 together with a collection

𝑀𝑋 of functions Ω → 𝑋 , called ‘admissible random elements’, such that

• all constant functions are in𝑀𝑋 ;
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• composition: if 𝛼 ∈ 𝑀𝑋 and 𝑓 : Ω → Ω is measurable then (𝛼 ◦ 𝑓 ) ∈ 𝑀𝑋 ;

• gluing: if 𝛼1 . . . 𝛼𝑛 · · · ∈ 𝑀𝑋 and Ω =
⊎∞

𝑛=1𝑈𝑖 measurable then 𝛼 ∈ 𝑀𝑋 where 𝛼 (𝜔) = 𝛼𝑛 (𝜔)
where 𝜔 ∈ 𝑈𝑖 .

A function 𝑓 : (𝑋,𝑀𝑋 ) → (𝑌,𝑀𝑌 ) between quasi-Borel spaces is quasi-Borel if for all 𝛼 ∈ 𝑀𝑋 ,

(𝑓 ◦ 𝛼) ∈ 𝑀𝑌 .

Proposition 4.3 ([29]). Quasi-Borel spaces and functions form a category Qbs that is cartesian
closed. Standard Borel spaces (𝑋, Σ𝑋 ) fully embed in quasi-Borel spaces, taking𝑀𝑋 to be the measurable
functions.

Thus, we can understand the types of a functional programming language as quasi-Borel spaces.

In the introductory paragraph to this section, 𝑋 and 𝑌 should be regarded as quasi-Borel spaces

and the functions 𝑓 , 𝑔 as quasi-Borel functions.

4.2 A category of probability kernels
4.2.1 Basic probability space. We now fix some basic ingredients:

• a standard Borel space (Ω, ΣΩ) with a probability measure 𝜇 on it;

• a measure-preserving function

𝛾 : (Ω, 𝜇) → (Ω × Ω, 𝜇 ⊗ 𝜇).
i.e. for all 𝑓 : Ω × Ω → R,

∫
𝑓 (𝛾 (𝜔)) 𝜇 (d𝜔) =

∫ ∫
𝑓 (𝜔1, 𝜔2) 𝜇 (d𝜔2) 𝜇 (d𝜔1);

• a chosen uniformly distributed random variable 𝜐 : Ω → [0, 1].
A canonical example is to let Ω = [0, 1]N∗ , where N∗ is the set of finite lists of natural numbers,

and let

𝛾 (𝜔) =
(
𝜆(𝑖1, . . . , 𝑖𝑛). 𝜔 (0, 𝑖1, . . . , 𝑖𝑛), 𝜆(𝑖1, . . . , 𝑖𝑛). 𝜔 (𝑖1 + 1, . . . , 𝑖𝑛)

)
In fact, this 𝛾 is an isomorphism. For an intuition, recall that a list of natural numbers describes

a path to a node in the tree that is infinitely deep and infinitely wide (sometimes called a ‘rose

tree’). So each 𝜔 ∈ Ω is an infinitely wide and deep tree where every node is annotated with a real

number, and 𝛾 splits the tree as indicated by the dotted line:

𝜔 ()

𝛾𝜔 (0) 𝜔 (1) 𝜔 (2) 𝜔 (3) . . .

𝜔 (0, 0) 𝜔 (0, 1) 𝜔 (0, 2) . . . 𝜔 (1, 0) 𝜔 (1, 1) 𝜔 (1, 2) . . .

...
...

...
...

...
...

...
...

Our probability measure 𝜇 on this choice of Ω is the countably-infinite product measure of the

uniform distribution, given by the Kolmogorov extension theorem. For each path (𝑖1, . . . , 𝑖𝑛) ∈ N∗,
the projection function gives a random variable Ω → [0, 1], which is uniformly distributed, and

these are all independent. In particular, the empty path gives 𝜐 : Ω → [0, 1].

4.2.2 Probability kernels.

Definition 4.4. Let 𝑋 and 𝑌 be quasi-Borel spaces. A probability kernel 𝑓 : 𝑋 ⇝ 𝑌 is a quasi-

Borel function 𝑓 : 𝑋 × Ω → 𝑌 . We consider the equivalence relation on probability kernels that is

determined by

𝑓 ∼ 𝑔 if for all 𝑥 ∈ 𝑋 and all morphisms ℎ : 𝑌 → R,
∫
ℎ(𝑓 (𝑥, 𝜔)) 𝜇 (d𝜔) =

∫
ℎ(𝑔(𝑥, 𝜔)) 𝜇 (d𝜔).

(3)
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We can perform various constructions on probability kernels:

• There is a probability kernel 1⇝ R which describes the uniform distribution on the unit

interval [0, 1], coming from 𝜐 : Ω → [0, 1].
• For any 𝑋 , the identity probability kernel 𝑋 ⇝ 𝑋 is the projection function 𝑋 × Ω → 𝑋 .

• We compose two probability kernels 𝑓 : 𝑋 ⇝ 𝑌 , 𝑔 : 𝑌 ⇝ 𝑍 , obtaining a probability kernel

𝑔𝑓 : 𝑋 ⇝ 𝑍 given by:

𝑋 × Ω
𝑋×𝛾
−−−→ 𝑋 × Ω × Ω

𝑓 ×Ω
−−−→ 𝑌 × Ω

𝑔
−→ 𝑍

• We tensor two probability kernels 𝑓 : 𝐴 ⇝ 𝐵, 𝑔 : 𝑋 ⇝ 𝑌 , obtaining a probability kernel

𝑓 ⊗ 𝑔 : (𝐴 × 𝑋 ) ⇝ (𝐵 × 𝑌 ) given by:

𝐴 × 𝑋 × Ω
𝐴×𝑋×𝛾
−−−−−−→ 𝐴 × 𝑋 × Ω × Ω

�−→ 𝐴 × Ω × 𝑋 × Ω
𝑓 ×𝑔
−−−→ 𝐵 × 𝑌

Proposition 4.5. Probability kernels modulo equivalence form a monoidal category ProbKer: that
is, composition and tensor are associative and unital up to equivalence, the interchange law is satisfied
up to equivalence, and the operations on probability kernels respect equivalence relations.

We can regard any quasi-Borel function 𝑋 → 𝑌 as a probability kernel 𝑋 × Ω → 𝑋 → 𝑌 ; this

induces an identity-on-objects functor Qbs→ ProbKer.

Proposition 4.6 (see [29]). The inclusion functor Qbs → ProbKer has a right adjoint. That is,
the functions (Ω → 𝑋 ) modulo equivalence form a monad on the category of quasi-Borel spaces.

4.2.3 Aside on alternative representations. We note a different notion of randomized function,

where the function is equipped with a parameter space (following e.g. [62]; see also [40, 61]). Let

us briefly define a para-randomized function between sets 𝑋 and 𝑌 to be a pair (Ω, 𝑓 ), where Ω is a

standard probability space and 𝑓 : 𝑋 × Ω → 𝑌 is a function. Unlike with our randomized functions,

the seed space is not fixed and is part of the data for a para-randomized function. Composition is

of the form

𝑓 : 𝑋 × Ω1 → 𝑌 𝑔 : 𝑌 × Ω2 → 𝑍 (𝑔 ◦ 𝑓 ) : 𝑋 × (Ω1 × Ω2) → 𝑍

with (𝑔 ◦ 𝑓 ) (𝑥, (𝜔1, 𝜔2)) = 𝑔(𝑓 (𝑥,𝜔1), 𝜔2). This formulation is convenient when a function has a

natural parameter space of fixed dimension such as R3. Then composing (𝑓 ,R𝑚) and (𝑔,R𝑛) yields
(𝑔 ◦ 𝑓 ,R𝑚+𝑛). This is reasonable for certain simple probabilistic programs, but in this article we are

especially interested in the situation where the parameter spaces are not so simple. For example,

in §3.1.2 we compose each point of a Poisson point process, of infinite dimension, with a random

linear function; it is not so clear how to manage this straightforwardly by combining dimensions.

To achieve a proper monoidal category of para-randomized functions, it is necessary to quotient,

otherwise the interchange laws and associativity fail. In this case we can quotient again by (3). In

fact, this yields a category isomorphic to ProbKer. But the isomorphism is difficult to compute with

in practice, and so we will not discuss this formulation further in what follows.

4.3 A category of measure kernels
We now turn to unnormalized measures. The notion of probability kernel on quasi-Borel spaces

accounts for the basic notion of pushing forward a probability measure along a function. The other

key method for building probability measures, and measures generally, is using densities or weights.
For example, the density of the beta distribution 6𝑥 (1 − 𝑥) defines a measure on the unit interval

Fig 2 (d). Densities can also construct unnormalized measures: starting from the standard normal

distribution on R, the weight (
√
2𝜋)𝑒 1

2
𝑥2

defines the Lebesgue measure on R, which assigns to each

open interval its length (see also [64]).



589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

LazyPPL: Monads and laziness for Bayesian modelling 111:13

A parameterized measure, i.e. a measure kernel, will thus be a probability kernel together with a

weight function. As motivated in Section 2, this matches the two operations forming measures in

probabilistic programming, sample and score.

Definition 4.7. A measure kernel (𝑓 , ℓ) : 𝑋 ⇝ 𝑌 is a pair of quasi-Borel functions, 𝑓 : 𝑋 ×Ω → 𝑌 ,

ℓ : 𝑋 × Ω → [0,∞]. We consider the equivalence relation on probability kernels that is determined

by (𝑓 , ℓ) ∼ (𝑓 ′, ℓ ′) if for all 𝑥 ∈ 𝑋 and all morphisms 𝑔 : 𝑌 → R,∫
ℓ (𝑥, 𝜔) · 𝑔(𝑓 (𝑥, 𝜔)) 𝜇 (d𝜔) =

∫
ℓ ′(𝑥,𝜔) · 𝑔(𝑓 ′(𝑥,𝜔)) 𝜇 (d𝜔).

We can perform various constructions on measure kernels too.

• Any probability kernel 𝑋 ⇝ 𝑌 can be regarded as a measure kernel with constant weight 1.

• Any function 𝑤 : 𝑋 → R can be regarded as a measure kernel 𝑋 ⇝ 1 onto the one point

space.

• We compose measure kernels by composing the probability kernels and multiplying the

weights.

• We tensor measure kernels by tensoring the probability kernels and multiplying the weights.

• We can regard any quasi-Borel function 𝑋 → 𝑌 as a measure kernel 𝑋 ⇝ 𝑌 , with weight

constant 1; this induces an identity-on-objects functor Qbs→ MeasKer.

Proposition 4.8 ([61], §4.3.3). Measure kernels modulo equivalence form a monoidal category. The
inclusion functor Qbs→ MeasKer has a right adjoint, and so the functions Ω → (𝑋 × R) modulo
equivalence form a monad on the category of quasi-Borel spaces.

Note. Although this appears similar to the writer monad transformer applied to the probability

monad, in fact the equivalence relation is coarser than this, because sometimes different weights

give rise to the same notion of integration.

4.4 Implementation of the probability monads
It is difficult to work with equivalence relations in practical functional programming. To avoid this,

we implement the above without equivalence relations but work behind a module abstraction to

avoid distinguishing equivalent terms.

We first define rose trees, with 𝛾 = splitTree:

data Tree = Tree Double [Tree]

splitTree :: Tree → (Tree , Tree)

splitTree (Tree r (t : ts)) = (t , Tree r ts)

A probability distribution over a is a function Tree → a.

newtype Prob a = Prob (Tree → a)

uniform :: Prob Double

uniform = Prob $ \(Tree r _) → r

return a = Prob $ const a

(Prob m) >>= f = Prob $ \g → let (g1,g2) = splitTree g

(Prob m') = f (m g1)

in m' g2

Note that although the type looks like the reader monad, the bind is different. In fact, a similar bind

is used in QuickCheck [12, §6.4], although we are not aware of a worked out semantic argument in

the prior literature.

We implement the measures monad using the writer monad transformer. Because weights

multiply, they often become very small, and so we use log numbers.
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newtype Meas a = Meas (WriterT (Product (Log Double )) Prob a)

score :: Double → Meas ()

score r = Meas $ tell $ Product $ (Exp . log) $ r

sample :: Prob a → Meas a

sample p = Meas $ lift p

4.4.1 Basic inference: Likelihood weighted importance sampling. The reference inference method is

likelihood weighted importance sampling. This is implemented in LazyPPL as a function

lwis :: Int → Meas a → IO [a]

which uses the following pseudocode, for (lwis 𝑛 m):

(1) generate 𝑛 pairs of weighted samples from m, i.e. pairs (𝑤𝑖 , 𝑥𝑖 ) of a weight𝑤𝑖 and result 𝑥𝑖
in a, each according to the following algorithm:

(a) lazily initialize a random rose tree t :: Tree, by allocating a fresh random number to every

node (this is where the IO monad is used, although a different probability monad could be

used instead;

(b) run the program m :: Meas a with the rose tree t;

(c) return the pair (𝑤, 𝑥) of the resulting value and the accumulated weight.

(2) generate an infinite stream of samples from the discrete ‘empirical’ distribution

∑𝑛
𝑖=1

𝑤𝑖∑𝑛
𝑖=1 𝑤𝑖
·𝑥𝑖 ,

as follows:

(a) pick a random number 𝑟 uniformly in the interval [0,∑𝑛
𝑖=1𝑤𝑖 ];

(b) if 𝑟 is in the interval [∑𝑗−1
𝑖=1

𝑤𝑖 ,
∑𝑗

𝑖=1
𝑤 𝑗 ] then output 𝑥 𝑗 .

As𝑛 →∞, the empirical distribution almost surely converges to the normalized probability distribu-

tion. So this is an approximate sampler from the normalized probability distribution corresponding

to the unnormalized measure m. But in practice, for small 𝑛, it is not usually very good, and so we

look at a better algorithm in Section 5.3.

5 METROPOLIS-HASTINGS SIMULATION

Recall that a closed probabilistic program induces a pair of functions R
ℓ←− Ω

𝑓
−→ 𝑋 , where Ω is

regarded with a basic probability measure 𝑝 , and ℓ is measurable. Here ℓ is regarded as a density

for an unnormalized distribution on Ω, which is then to be pushed forward to 𝑋 , which is the space

of interest. There are four measures of interest:

• The basic probability measure 𝜇 on Ω;
• The unnormalized measure 𝜇ℓ on Ω, induced by regarding ℓ as a density. Formally, 𝜇ℓ (𝑈 ) =∫

Ω
[𝜔 ∈ 𝑈 ] · ℓ (𝜔) 𝜇 (d𝜔). This could be written in programming terms as

do {w ← sample mu ; score (l w); return w} :: Meas Omega.

(Here, and throughout Section 5.1 and the proof of Thm. 5.2, we are using LazyPPL syntax to

discuss and manipulate semantic measures, in the spirit of synthetic measure theory – these

are not necessarily programs to be run directly.)

• The normalized form of the measure 𝜇ℓ ,
𝜇ℓ

𝜇ℓ (Ω) , which is a probability measure, assuming

𝜇ℓ (Ω) ∈ (0,∞).
• The pushforward probability measure on 𝑋 , 𝑓 ∗ ( 𝜇ℓ

𝜇ℓ (Ω) ). This could be written

do {w ← sample mu ; score (l w); score (1/(muℓ Omega)) ; return (f w)} :: Meas X.

The challenge is that the normalizing constant 𝜇ℓ (Ω) is typically difficult to calculate. The Markov-

Chain Monte Carlo simulation algorithms provide a sampling procedure for
𝜇ℓ

𝜇ℓ (Ω) on Ω, without
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explicitly calculating 𝜇ℓ (Ω). They are best described as algorithms over Ω, rather than 𝑋 , although

we can push-forward the samples to 𝑋 at the last minute.

5.1 Proposal kernels in general
The key ingredient for a Metropolis-Hastings algorithm is a ‘proposal’ Markov kernel. This is a

function 𝑘 : Ω × ΣΩ → [0, 1] such that each 𝑘 (𝜔,−) is a probability measure and each 𝑘 (−,𝑈 ) is
measurable. We follow the analysis of proposal kernels from [20, 27].

The proposal kernel 𝑘 does not directly capture the probability measure
𝜇ℓ

𝜇ℓ (Ω) . Rather, it induces

another kernel, which works by first proposing changes (using 𝑘) and then either accepting or

rejecting them (§5.3).

Given a Markov kernel 𝑘 we can form an unnormalized kernel by composing it with the unnor-

malized measure 𝜇ℓ . This gives two measures𝑚,𝑚rev on Ω × Ω:

𝑚(𝑈 ) =

∫
Ω

∫
Ω
[(𝜔1, 𝜔2) ∈ 𝑈 ] · ℓ (𝜔1) 𝑘 (𝜔1, d𝜔2) 𝜇 (d𝜔1)

𝑚rev (𝑈 ) =

∫
Ω

∫
Ω
[(𝜔2, 𝜔1) ∈ 𝑈 ] · ℓ (𝜔1) 𝑘 (𝜔1, d𝜔2) 𝜇 (d𝜔1)

These can be described in programming terms as

𝑚 = do {w1← sample mu ; w2← sample (k w1) ; score (l w1) ; return (w1,w2)}

𝑚rev = do {w1← sample mu ; w2← sample (k w1) ; score (l w1) ; return (w2,w1)}

Definition 5.1 ([27]). We say that a kernel 𝑘 is Green with respect to ℓ and 𝜇 if𝑚rev is absolutely

continuous with respect to𝑚. This means that there exists a ‘ratio’ 𝑟 : Ω × Ω → R (the ‘Radon-

Nikodym derivative’) such that∫
[(𝜔1, 𝜔2) ∈ 𝑈 ] ·𝑟 (𝜔1, 𝜔2) ·ℓ (𝜔1) 𝑘 (𝜔1, d𝜔2) 𝜇 (d𝜔1) =

∫
[(𝜔2, 𝜔1) ∈ 𝑈 ] ·ℓ (𝜔1) 𝑘 (𝜔1, d𝜔2) 𝜇 (d𝜔1)

or in programming terms

do {w1← sample mu; w2← sample (k w1); score (l w1); score (r w1 w2); return (w1,w2)}

= do {w1← sample mu; w2← sample (k w1); score (l w1); return (w2,w1)}

5.2 A new proposal kernel for lazy rose trees
Recall our choice of Ω is rose trees: infinitely deep and infinitely wide trees labelled from [0, 1],
with the basic probability measure 𝜇 giving the uniform distribution to all nodes. We consider a

new proposal kernel, parameterized by a probability 𝑝 ∈ [0, 1]:
• for every node, toss a coin with bias 𝑝; if heads, resample from the uniform distribution on

[0, 1], if tails, leave it alone.
This requires an infinite number of changes, but since probability is treated lazily, there is no

problem in practice.

mutateTree :: RealNum → Tree → Prob Tree

mutateTree p (Tree a ts) =

do b ← bernoulli p

a' ← uniform

ts ' ← mapM (mutateTree p) ts

return $ Tree (if b then a' else a) ts '
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This can be defined measure-theoretically using Kolmogorov’s extension theorem.

Theorem 5.2. The kernel 𝑘 : Ω × ΣΩ → [0, 1] given by (mutateTree p) is Green, and the ratio is
𝑟 (𝜔1, 𝜔2) = ℓ (𝜔2)

ℓ (𝜔1) .

Proof notes. Notice that 𝑘 is reversible with respect to 𝜇 in that

do {w1← mu; w2← k w1; return (w1,w2)} = do {w1← mu; w2← k w1; return (w2,w1)}

This can be deduced from Kolmogorov’s extension theorem, by proving it for finite projections.

Therefore the given 𝑟 is indeed a ratio, since

do {w1← sample mu; w2← sample (k w1); score (l w1); score (r w1 w2); return (w1,w2)}

= do {w1← sample mu; w2← sample (k w1); score (l w2); return (w1,w2)}

= do {w1← sample mu; w2← sample (k w1); score (l w1); return (w2,w1)}

as required, where the second step uses the reversibility of 𝑘 with respect to 𝜇. □

Technical note. Our 𝑘 is reversible in the given sense, and this appears to be a ‘Metropolis ratio’.

But because our space Ω is infinite dimensional, the traditional density-based analysis of Metropolis

does not apply, whereas this more general approach by Green does.

5.3 The Metropolis-Hastings-Green Markov Chain
Let 𝑘 : Ω × ΣΩ → [0, 1] be a Green Markov kernel with ratio 𝑟 : Ω × Ω → [0, 1]. The Metropolis-
Hastings-Green kernel 𝑘MHG : Ω × ΣΩ → [0, 1] is now given by proposing a new 𝜔2 via 𝑘 (𝜔1,−),
and accepting or rejecting the proposal according to min(1, 𝑟 (𝜔1, 𝜔2)). Either way, we produce
something, either the new 𝜔2 or the old 𝜔1.

kMHG :: Omega → Prob Omega

kMHG w1 = do

w2 ← k w1
b ← bernoulli $ min 1 (r w1 w2)

if b then return w2 else return w1

We can then construct a Markov chain with transitions given by 𝑘MHG . The key result (e.g. [20, 27]) is

that when 𝑘 is well-behaved, the states of this Markov chain approximate the posterior distribution.

Theorem 5.3 says this formally. Recall that a probability measure 𝜈 on Ω is a stationary distribution

for a kernel 𝑘 : Ω × ΣΩ → [0, 1] if ∫
Ω
𝑘 (𝜔,𝑈 ) · 𝜈 (d𝜔) = 𝜈 (𝑈 ).

We say that 𝑘 is irreducible with respect to a probability measure 𝜉 if for every 𝜔 ∈ Ω and for every

𝑈 ∈ ΣΩ such that 𝜉 (𝑈 ) > 0, there exists 𝑛 ∈ N such that 𝑘𝑛 (𝜔,𝑈 ) > 0. Informally, irreducibility

means that the Markov chain will reach any set of positive measure in finite time.

Theorem 5.3 (Metropolis-Hastings-Green). For any Green kernel 𝑘 , the induced kernel 𝑘MHG
has a stationary distribution, which is the normalized probability measure 𝜇ℓ

𝜇ℓ (Ω) on Ω. If 𝑘MHG is
irreducible with respect to 𝜇ℓ

𝜇ℓ (Ω) then the stationary distribution is unique.

We can therefore use the Metropolis-Hastings-Green kernel as a method for sampling from the

normalized probability measure.

Proposition 5.4. For the mutateTree kernel (§5.2) with 𝑝 = 1, 𝑘MHG is irreducible for 𝜇ℓ
𝜇ℓ (Ω) .

Proof note. Here 𝑛 = 1 suffices. □
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We recall that correctness of a similar ‘all-sites’ Metropolis-Hastings scheme for probabilistic

programming was proved in [7], albeit for a non-lazy language.

There remains a concern that 𝑘MHG is not irreducible for 𝑝 < 1. Indeed, in that situation, the

set 𝑈 = {𝜔 ′ | ∀𝑖 . 𝜔𝑖 ≠ 𝜔 ′𝑖 } is not reachable from 𝜔 , even though 𝑈 typically has measure 1.

More informally, although every node has a chance of being changed, there will almost surely

exist a node that is not changed. One way to resolve this would be to mix (mutateTree p) with

(mutateTree 1), using Theorem 7.1; the resulting kernel is trivially irreducible, even if the chance

of using (mutateTree 1) is kept miniscule. In practice, (mutateTree p) alone appears to be fine,

because any finite collection of samples will only invoke a finite number of nodes anyway.

5.4 Summary and example
In summary, we have a procedure for sampling from the distribution described by a probabilisitic

program, by using the Metropolis-Hastings-Green kernel (§5.3) associated to the Green Markov

kernel (mutateTree p) (§5.2). Each step of the algorithm provides a sample from the measure
𝜇ℓ

𝜇ℓ (Ω)
on Ω, and we can push-forward this sample along 𝑓 : Ω → 𝑋 to obtain a sample from the measure

described by the probabilistic program.

To illustrate, we recall the simple linear regression model (§3.1). Although we are using an

infinite tree, only two samples will be used, for the slope a and intercept b. If we use our kernel

with 𝑝 = 0.5, at each step, one of the following steps will happen, each with probability 0.25.

• We will change neither a nor b. (This is a wasted step.)

• We try to change the slope a but keep the intercept b the same. This is useful if they are

independent.

• We try to change the intercept b but keep the slope a the same. Again, this is useful if they

are independent.

• We try to change both the slope a and the intercept b. This is sometimes called ‘multisite’

inference, and is useful if they are correlated.

As is always the case with general purpose methods, it is non-optimal if the independence and

correlations are known. But our algorithm serves well where they are not known, and moreover

works perfectly well with the lazy structures used in the probability monad.

6 MORE ADVANCED ILLUSTRATIONS
We demonstrate the power of laziness for constructing models, illustrating more examples from

the theory of Bayesian non-parametrics and practical probabilistic programming.

6.1 Laziness, control flow and addressing
We consider a very simple model, to illustrate the kind of reorganization that laziness allows.

Suppose that we toss a fair coin, and then, depending on the outcome, we toss one of two biased

coins. We then notice that we got the same result both times. What was the result?

model :: Prob (Bool , Bool)

model = do x ← bernoulli 0.5

y ← if x then bernoulli 0.4 else bernoulli 0.7

return (x,y)

test = do {(x,y) ← sample model; score (if x==y then 1 else 0); return x}

The result is True with probability
0.5×0.4
0.5×0.7 ≈ 0.57. Because the probability monad is affine, the model

is equivalent to the situation where we actually tossed all three coins: by laziness, only two coins

will only ever actually be looked at on any run.
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model2 = do x ← bernoulli 0.5

ytrue ← bernoulli 0.4

yfalse ← bernoulli 0.7

return (if x then (x, ytrue) else (x, yfalse ))

Although the second formulation might look more costly, in fact the run time cost is roughly the

same, because of laziness, and moreover, it results in fewer rejections with our new Metropolis-

Hastings kernel (§5.2). This is because in the second formulation, all three bernoulli statements

are allocated different nodes in the rose tree, and so the proposal will often be accepted even if

just x changes. In the first formulation, however, the proposal will be rejected unless both x and y

are changed simultaneously. These kinds of ‘addressing’ issues have been noted by other authors

(e.g [34]), and we note that laziness provides a clear way to deal with them.

6.2 Regression with a prior over program expressions
We revisit the regression scenario from Section 3.1. We can phrase program induction as a regression

problem. This is done in e.g. [73], but we discuss it here because the typed setting is clarifying,

and it illustrates some further aspects of laziness. We consider a prior over program expressions,

randExpr :: Prob Expr, an evaluation function Expr → RealNum → RealNum, and then calling

regress sigma dataset (do { e ← randExpr ; return (eval e) })

We used this method to infer the expressions shown in Figure 3. In more detail, but keeping things

fairly simple, we consider a datatype

data Expr = Var | Constt RealNum | Add Expr Expr | Mult Expr Expr

| IfLess RealNum Expr Expr

for expressionswith a single variable, and consider an evaluation function Expr → RealNum → RealNum

defined by induction over expressions. It remains for us to discuss our prior, which is a random

expression built by recursively making choices about what its subexpressions will be. Here we use

the method of Section 6.1, exploiting laziness to simultaneously consider all the possible expression

choices, which are now infinite.

randExpr :: Prob Expr

randExpr = do

i ← categorical [0.3 ,0.3 ,0.18 ,0.18 ,0.04]

es ← sequence

[return Var ,

do { n ← normal 0 5 ; return $ Constt n },

do { e1 ← randExpr ; e2 ← randExpr ; return $ Add e1 e2},

do { e1 ← randExpr ; e2 ← randExpr ; return $ Mult e1 e2},

do { r ← normal 0 5 ; e1 ← randExpr ; e2 ← randExpr ;

return $ IfLess r e1 e2}]

return $ es !! i

When we run inference, each expression template (roughly a ‘sketch’, [63]) is allocated a different

path through the rose tree. Some likely results are shown in Fig. 4(b).

6.3 General stochastic memoization
In Section 3.2.2 we discussed stochastic memoization, a second-order function memoize, which

is a crucial primitive in Church [24]. Memoization is a form of laziness, and conversely, as we

discussed, it can be defined in using pure laziness for many specific types. An alternative approach
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is to actually use a memo table, and then we can define memoize whenever its argument supports

equality testing. We define

generalMemoize :: Eq a => (a → Prob b) → Prob (a → b)

Our implementation ensures that a sample from generalMemoize f returns a function that has

a fresh hidden memo table of pairs (x,y) of argument/result pairs, initialized empty. When the

function is subsequently called with argument x:

• If a value at x is already stored in the memo table, return that value.

• If not, x sample y ← f x, store (x,y) in the memo table, and return y.

To work with this memo table, we need to use state. (We do this via unsafePerformIO.) Our imple-

mentation is safe in the following sense:

• the sampled function appears deterministic to the user: function calls can be reordered,

discarded, and copied [19]; and

• the resulting distribution (generalMemoize f) in (Prob (a → b)) satisfies the commutativity

and affine laws (1, 2).

As a simple example, we can define white noise via

generalMemoize (\x → uniform) :: Prob (RealNum → RealNum)

White noise is difficult to analyze in measure-theoretic terms, and it is curious that this coincides

with the limitations of pure laziness in functional programming.

6.4 Regression with a Gaussian process
Gaussian processes (GPs) are examples of random real-valued functions, so their type in LazyPPL

is Prob (a → RealNum). To illustrate the key points, we have focused on a very simple Gaussian

process, the one-dimensional Wiener process, also known as Brownian motion. This has type

Prob (RealNum → RealNum).

A draw from the Wiener process is a function that is almost surely continuous everywhere

but differentiable nowhere. Informally, the Wiener process is the continuous-time version of a

symmetric random walk on R, starting at 0. We have used this as a prior for a regression model,

using the regress function and the dataset from Section 3.1. See Figure 3 (right) for some draws

from the posterior.

Although the Wiener process formally involves an uncountable number of random choices, in

practice for Wiener process regression we only need to know its value at the points where it is

evaluated. These depend on the observation points, the resolution of the plot, and the viewport.

Thus although we use the Wiener process as a random function, it makes practical sense because it

can be evaluated lazily.

The Wiener process challenges our primitives for laziness. Before turning to our implementation

of theWiener process, we first discuss a simpler discrete Gaussian randomwalk, Prob (Int → RealNum).

At each step, this moves according to a normal distribution. This might be defined as

rw :: Prob (Int → RealNum)

rw = do { ys ← iterateM (\y → normal y 1) 0 ; return (\x → ys !! x) }

Suppose we subsequently evaluate the position at 1 then 5 and then 3:

do {f ← rw ; (f 1 , f 5, f 3)}

This implementation is lazy – it will never actually make the random choices needed to determined

the position at time 6. But it will need to calculate the position at times 2 and 4. In fact, it is possible

to avoid these by following the Brownian bridge method (e.g. [23, §3.1.1, Fig. 3.1]):
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do f1 ← normal 0 1

f5 ← normal 0 (sqrt 2)

f3 ← normal (f1 + 0.5*(f5-f1)) 1

return (f1 , f5, f3)

We can also implement the Brownian bridge method without knowing in advance which arguments

a function will be called with. Somewhat similarly to §6.3, our implementation is to return a function

that has a hidden memo table of pairs (x,y) of argument/result pairs, initialized with one entry

(0,0). When the function is subsequently called with argument x:

• If a value at x is already stored in the memo table, return that value.

• If not, and if x is lower than the lowest entry (x0, y0), or higher than the highest entry

(x0, y0), sample y ← normal y0 (sqrt |x0 - x|), store (x, y) in the memo table, and return

y.

• Otherwise, if (x0, y0) and (x1, y1) are the nearest points in the memo table (x0 ≤ x ≤ x1),

then sample y ← normal (y0 + r*(y1 - y0)) (sqrt (r * (x1 - x))), and store (x, y) in

the memo table, and return y. Here r = (x - x0)/(x1 - x0).

To store the memo table, we need to use state (via unsafePerformIO). Our implementation is safe in

the same sense as the stateful stochastic memoization (§6.3): the sampled function appears determin-

istic to the user, and the resulting distribution Prob (Int → RealNum) satisfies the commutativity

and discardability laws.

This exact same pseudocode works for the Wiener process, and this is how we implement

wiener :: Prob (RealNum → RealNum). In the case of functions from the integers, this Brownian

bridge implementation is more efficient than the list based implementation rw. But in the Wiener

process, which takes real valued arguments, there appears to be no other way to implement

this random function. Thus ‘continuous’ stochastic processes, which push against the measure-

theoretic foundations of probability, also push against the traditional lazy foundations of functional

programming.

6.5 Feature extraction and the Indian Buffet Process
A feature assignment for a data set is a finite set of features, together with a subset of these features

for each data point. For example we can have a set of movies, and a feature assignment could be a

set of genres for each movie. We can represent a feature assignment as a boolean-valued matrix,

where the columns are features and the rows are data points.

We consider the problem of feature extraction, where we have a data set but the features are

unknown. We can view this as a generalized version of the clustering problem where clusters are

allowed to overlap, so a data point could belong to many clusters.

The Indian Buffet Process (IBP) is a Bayesian model for feature extraction [28]. It provides a

distribution on boolean-valued matrices, described by a process for sampling rows one by one.

As with the CRP, we think of data points as customers walking into a restaurant, but here each

customer selects a number of dishes (features) from a buffet. The dishes are selected based on their

popularity with previous customers. To implement the IBP we use some abstract types:

newtype Restaurant = R ([[ Bool]], Counter)

newtype Dish = D Int deriving (Eq, MonadMemo Prob)

newRestaurant :: RealNum → Prob Restaurant

newCustomer :: Restaurant → Prob [Dish]

The idea is that a restaurant is initialized with an infinite matrix describing an infinite (but lazy)

simulation of the process. The counter keeps track of how many rows have already been consumed
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by customers coming in. A call to (newCustomer r) will simply look up the next row in the matrix,

return the column indices containing 1’s, and increment the counter in r.

A probabilistic counter. The Counter type is introduced to encapsulate an integer reference:

data Counter = C (IORef Int)

Themain reason for this encapsulation is to hide and restrict any stateful operations in themodelling

interface. Although our use of state is safe in practice, the counter will affect the distributions, so

all operations are probabilistic:

newCounter :: Prob Counter

readAndIncrement :: Counter → Prob Int

It is notable that the IBP seems to necessitate some deviation from pure laziness in its implemen-

tation, which appears to coincide with continuity issues in the analysis of the IBP (e.g. [56, Sl. 6],

also [1, 54, 55]). (We note that a counter can be useful for other models, beyond the IBP, to keep

track of the process history. One example is an alternative representation of the Chinese Restaurant

Process in which a new customer is assigned a table based on the locations of previous customers.)

China

Cuba

Indonesia

Iraq

Italy

Jamaica

Japan

Libya
. . .

Germany

Fig. 5. Feature extraction for a
psychological experiment. The
columns correspond to features
and assignments are automati-
cally inferred using an IBP model.

A feature extraction example. We turn to an application of the

IBP. We have used LazyPPL to solve a basic problem from applied

psychology [49]. The problem is as follows. We have a set of 16

countries together with a similarity coefficient for each pair of

distinct countries, calculated based on answers from participants

in a study. The goal is to infer a set of underlying features which

characterize the countries in the participants’ minds, and influence

their judgement. In the Bayesian model we consider, the similarity

coefficients are calculated from the subset of features that two

countries share. We use an IBP prior on feature assignments for

the set of countries, and incorporate the experimental data to infer

a distribution on probable feature assignments.

Our results are similar to those in [49], surprisingly so since

we just used the plain inference of Section 5. The features are

inferred and abstract, but they are interpretable. For example, in

Fig. 5, columns 1 and 5 could correspond to Asia and Caribbean

respectively; column 7 could indicate conflicts.

6.6 Relational modelling and Mondrian process
As a final example, we consider the Mondrian process [57], a model often used to generate random

relations between sets. Formally, a draw from a Mondrian process is a block partition of a 𝑘-

dimensional hypercube of the form Θ1 × · · · × Θ𝑘 , where each Θ𝑑 is a closed interval [𝑎𝑑 , 𝑏𝑑 ]. (see
also [3]). These are easy to manipulate with Haskell data types:

data Mondrian a = Block a [(RealNum , RealNum )]

| Partition Int RealNum [(RealNum , RealNum )] (Mondrian a) (Mondrian a)

Our implementation of the Mondrian process provides a parameterized sampler:

newMondrian :: (Prob a) → RealNum

→ [(RealNum , RealNum )] → Prob (Mondrian a)

A call to (newMondrian 𝜇 𝜆 Θ) follows a recursive process, which we summarize now.
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The intuitive idea is that we make one cut through the hypercube Θ, and then recursively call the

Mondrian process on each separate part. The parameter 𝜆 ∈ R is a fixed budget, which determines

how deep the recursion will go. Every cut takes away some amount from the budget, sampled from

an exponential distribution, and we stop when the budget has run out. The direction of the cut

is orthogonal to one of the axes, chosen at random with probability proportional to the length

of the corresponding interval [𝑎𝑑 , 𝑏𝑑 ]. Then, we draw a point uniformly in [𝑎𝑑 , 𝑏𝑑 ] to determine

the cut position. This yields a 𝑘-d tree, whose leaves are 𝑘-dimensional blocks partitioning the

initial domain Θ (the root of the tree) and whose internal nodes are given by a cut point 𝑥𝑑 ∈ R
splitting a subdomain Θ′ ⊆ Θ across a given axis 𝑑 ∈ N (cf. the Mondrian data type). Interestingly,

in dimension 𝑘 = 1 the positions of the cuts form a Poisson point process (§1.2).

After generating the partition, we annotate each block with a sample 𝑝 from the parameter

distribution 𝜇. Typically, 𝜇 is a distribution on [0, 1] so that 𝑝 represents the probability that points

associated with this block should be related. (In two dimensions and for Θ = [0, 1]2, we have a
particular kind of graphon, see e.g. [50].)

Experiments with a generative model for relational data. Following [57], we have experimented

with Mondrian process inference using a synthetic data set, consisting of relational data generated

from an actual 1921 painting by Piet Mondrian (Figure 6 (a,b)). This is intended as a simple proof of

concept. The implementation relies on a function for generating relations lazily:

sampleRelationFromMondrian2D :: Mondrian RealNum → Prob Relation

Relation is a type of lazy infinite binary relations, or matrices. We define abstract types Row and

Col and obtain an interface for modelling with exchangeable arrays:

data Relation = Relation Counter Counter [[Bool]]

newRow :: Relation → Prob Row

newCol :: Relation → Prob Col

lookup :: Relation → Row → Col → Bool

An example posterior sample is displayed in Figure 6 (c). We can experiment with variants of this

model. For instance, if we record the plane coordinates when creating our synthetic data points,

our inference algorithm recovers block partitions analogous to the initial painting (Figure 6 (d)).

6.7 Summary
Probabilistic programming makes it easy to construct hierarchies or combinations of models. This

is especially true in LazyPPL where the types and lazy data structures make the modularity clear.

We emphasize that laziness can be exploited at every level: for instance it is easy to generate a

Mondrian relation over the tables of a Chinese Restaurant for a dataset, even without knowing in

advance how many tables there are. There are many practical examples of this kind of construction:

Mondrian Forests [? ], Chinese Restaurant Franchises [5], hierarchical Generalized IBPs [55], and

others. For these complex models it is harder to reason about symmetries and exchangeability, so

abstract types for encapsulating internal details are another benefit of LazyPPL.

7 SINGLE-SITE METROPOLIS-HASTINGS WITH GHC-HEAP

The inference algorithm in Section 5 randomly mutates each node (also sometimes referred to as

site) in the lazy rose tree with some given bias 𝑝 at every proposal step. Such an inference technique

may not always be desirable, however, e.g. in situations where we want to control the exact number

of nodes being mutated in each proposal (so that our mutations are more gradual): we can never

guarantee a constant fixed number of mutations due to them happening independently of each

other.
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Fig. 6. Left to right: (a) “Composition with Large Blue Plane, Red, Black, Yellow, and Gray” by Mondrian (1921),
(b) our representation of (a), and a random synthetic relation (red = false for a pair of points, green = true),
(c) a posterior sample, and (d) a variant of the experiment recording the plane coordinates.

Wingate et al. [76] suggest a proposal kernel where only a single node is mutated at every

proposal step. In this Section we discuss our own implementation of this in LazyPPL. We found this

to be particularly profitable where it is unclear which 𝑝 to use, as in the clustering example (§3.2).

7.1 State-dependent mixing in general
We consider the following general method for mixing Green kernels (Def. 5.1), which is perhaps

implicit in [20, 27]. Let 𝑘𝑖 : Ω × ΣΩ → [0, 1] be a countable family of Markov kernels (§5.1), and let

𝑐 : Ω × N→ [0, 1] be a parameterized probability distribution function over N, i.e. for all 𝜔 ∈ Ω,∑∞
𝑖=1 𝑐 (𝜔, 𝑖) = 1. Let 𝑘 be the mixed kernel

𝑘 (𝜔,𝑈 ) = ∑∞
𝑖=1 𝑐 (𝜔, 𝑖) · 𝑘𝑖 (𝜔,𝑈 ). (4)

Suppose that each 𝑘𝑖 is a Green kernel with respect to 𝜇, with ratio 𝑟𝑖 : Ω × Ω → [0,∞] (Def. 5.1).
Suppose that we can always detect which kernel was used, i.e. there is a function 𝑒 : Ω × Ω → N
such that

∫
[𝑒 (𝜔,𝜔 ′) = 𝑖] 𝑘𝑖 (𝜔, d𝜔 ′) 𝜇 (d𝜔) = 1.

Theorem 7.1. The kernel 𝑘 (4) is a Green kernel with respect to 𝜇, with ratio 𝑟 : Ω × Ω → [0,∞]

𝑟 (𝜔,𝜔 ′) = 𝑟𝑖 (𝜔,𝜔 ′) ·
𝑐 (𝜔 ′, 𝑖)
𝑐 (𝜔, 𝑖) where 𝑖 = 𝑒 (𝜔,𝜔 ′).

7.2 Single-site proposal kernel for lazy rose trees
Recall the representation of probabilistic programs developed in Sections 4 and 5, with Ω the

infinite rose trees, and weight function ℓ : Ω → [0,∞], and an outcome Ω → 𝑋 . We describe the

single-site proposal kernel at this level.

7.2.1 High level view. We now instantiate state-dependent mixing as follows. We work up-to a

bijection between natural numbers and paths through the rose tree, which are countably infinite.

• For each path 𝑖 through the rose tree, let 𝑘𝑖 be the kernel that randomly changes node 𝑖 and

leaves the others unchanged. This is a Green kernel with ratio ℓ (𝜔 ′)/ℓ (𝜔).
• if 𝜔 and 𝜔 ′ differ by only one node, then 𝑒 (𝜔,𝜔 ′) returns the path to this node;

• For any given tree 𝜔 , we define 𝑐 (𝜔, 𝑖) as follows. First, we calculate the finite set of nodes
𝑆𝜔 = {𝑖1 . . . 𝑖𝑛} that are used in evaluating ℓ (𝜔) and 𝑓 (𝜔). We then pick one at random, i.e. let

𝑐 (𝜔, 𝑖) = 1

|𝑆𝜔 | if 𝑖 ∈ 𝑆𝜔 , and 𝑐 (𝜔, 𝑖) = 0 otherwise.

• Following Theorem 7.1, we can calculate the Green ratio as
ℓ (𝜔′) · |𝑆𝜔 |
ℓ (𝜔) · |𝑆𝜔′ | .

7.2.2 Calculating the nodes that are used in evaluation. Lazy evaluation is the sole reason why

we are even able to consider ‘the set of nodes in the tree that have been evaluated’ in any given

run of our probabilistic program, and it ensures that no irrelevant sites are present in that set (i.e.
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those sites which do not affect the outcome of the result of that run). By going under the hood and

inspecting system memory (from within Haskell) we are able to calculate this set of sites 𝑆𝜔 .

Crucially, we make use of GHC’s ghc-heap module, which exposes the layout of heap objects

in memory allowing us to view function closures, pointers to thunked objects, and several other

GHC runtime-specific objects present in memory. By analysing the parts of the tree that have been

evaluated to weak-head normal form and parts still untouched (present in memory as thunks), we

are able to safely inspect the runtime evaluation state of our random tree without forcing any further

computation on it. We encapsulate our use of ghc-heap in a method truncating lazy infinite rose

trees into finite partial trees, as follows. We first define the type of partial trees where unevaluated

branches are explicitly marked.

data PTree = PTree (Maybe Double) [Maybe PTree]

Following this we define trunc :: Tree → IO PTree, the key functionwe use in our implementation

of single-siteMH. It takes a lazy rose tree as input, inspects its structure in the Haskell heap, and from

it builds the partial tree. For example, if the evaluation of a program forces the partial evaluation of

a rose tree in memory to be t = Tree _ (_ : (Tree 0.3 _): _ : (Tree 0.4 _): _) (underscores

represent unevaluated thunks), its truncation will return PTree Nothing [Nothing, Just (PTree (

Just 0.3) []), Nothing, Just (PTree (Just 0.4) [])]. It is from this partial tree that we identify

the finite set of used nodes 𝑆𝜔 , which is the key ingredient in the proposal step (§7.2.1). We then

uniformly pick a site to modify, and follow the generic Metropolis-Hastings-Green algorithm (§5.3).

7.2.3 A note on irreducibility. A Markov chain constructed using our single-site MH need not

always be irreducible: this depends on the program. This can immediately be seen in the coin-toss

example test from §6.1 where the only way to go from (x,y) = (True,True) to (False,False) is

via either (True,False) or (False,True) (since only one variable can be changed at a time), but

those are score 0 regions which will never get accepted, forcing all our samples to be constant.

To illustrate why formal irreducibility should perhaps not be an end goal in itself, notice that we

can make this particular kernel formally irreducible by replacing the score 0 with an extremely

small non-zero value. But in practice our samples will still be constant due to the tiny probability

of accepting the intermediate sample.

Another general approach would be to use Theorem 7.1 to mix single-site MH with another

kernel that is more reliably irreducible, such as the kernel from Section 5.

8 RELATEDWORK ON LAZINESS AND PRACTICAL SYNTHETIC PROBABILITY
Our aim in this work is to study the power of types and laziness as a practical synthetic measure

theory. Our work is inspired by many other developments on the practical front.

8.1 Laziness in probabilistic programming languages
The Church project [24] is a major inspiration for our work. Although Church is an eager language,

it supports a primitive memoization construct. This leads to a programming style for lazy behaviour:

instead of writing { x ← t ; y ← u ; z ← v ; ...} and expecting lazy evaluation, one can write

f ← sample (memoize \i → case i of {1 → t ; 2 → u ; 3 → v}) ; ...

with eager evaluation, and use f 1, f 2, f 3 in place of x, y, z respectively. Although this is an

unusual programming style, it is useable nonetheless. Since Church is untyped, the connection with

synthetic measure theory is less clear, but the connection with non-parametric statistics is heavily

emphasised, for example in the analysis of stick-breaking [24, 54] and exchangeable primitives [78].

In summary, from a bird’s eye view, LazyPPL is a variation of Church with more idiomatic laziness

and a type system that gives a connection with synthetic measure theory.
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Languages such as Anglican [72], WebPPL [25], BayesDB [58] and Turing [6] follow within the

tradition of Church, exploring ideas from non-parametric statistics further.

The Birch language [46] is possibly more practically focused than Church. It is class-based,

transpiling to C++, rather than a fully functional language, and so the connection to synthetic

measure theory is less clear. But Birch heavily uses laziness and advanced control flowmanipulations

in its inference methods [44, 45], and in this regard it is considerably more advanced than the

LazyPPL implementation.

Beyond these examples, laziness has been explored in various aspects of probabilistic program-

ming, dating back at least as far as the pioneering work by Koller et al. [39], and more recently

in the work on lazy factored inference in Figaro [52], and efficient implementation in delimited

continuations through Hansei ([35], which focuses on discrete distributions).

8.2 Other probabilistic programming work using Haskell and quasi-Borel spaces
Various libraries have exploited Haskell for probabilistic programming. Hakaru [47, 48, 75] is a

major example, providing a DSL with impressive symbolic inference methods. Stochaskell [53]

also provides a DSL, embedded in Haskell, which compiles to Stan, Church and other back-ends.

Stochaskell moreover allows a limited form of lazy lists, implemented via Church’s memoization.

Our work here is most heavily inspired by MonadBayes [60], which is a monad-based imple-

mentation of a variety of inference combinators, also inspired by the formalism of quasi-Borel

spaces [61]. MonadBayes is not fully lazy: the Metropolis-Hastings simulation is based on the

state monad and does not support laziness. The LazyPPL project grew out of adding laziness to

MonadBayes, leading to the developments in this paper, and to the more natural expression of

the various examples in this paper. For simplicity of exposition here we have focused here on the

Metropolis-Hastings inference, but in practice it would be appropriate to adapt some of the other

inference combinators of MonadBayes to the lazy setting too.

Going beyond the inference combinators of MonadBayes, quasi-Borel spaces have also been

used as a foundation for a new dependent type system based on ‘trace types’ [40] (which has been

prototyped in Haskell). This provides a potential well-typed foundation for the ‘programmable

inference’ that makes recent languages such as Gen [14] and Pyro [4] so powerful in practice. A

possibly fruitful direction would be to generalize the traces allowed in trace types to accommodate

the laziness and rose-tree-based sample space that we use in this paper.

Further beyond our aims here, quasi-Borel spaces have also found profit in many other areas

of probabilistic programming, including program logics (e.g. [2, 59]) and functional languages for

probabilistic network verification ([74], following [15]).

8.3 Other implementations of synthetic probability theory
Finally we note two other approaches to implementing synthetic probability theory. The first is the

EfProb library [9], a python library inspired by the effectus theory foundation for probability [11].

The second is a python/F# library for exact conditioning over Gaussian-based models [68], inspired

by categorical constructions over Markov categories [16, 69]. These approaches are currently

focused on more refined notions of conditional probability that are possible in more restricted situa-

tions (respectively, discrete probability and Gaussian probability), in contrast to our approach which

is based on the measure-theoretic foundations of general purpose Monte Carlo-based inference.

9 SUMMARY
We have presented LazyPPL: a lazy probabilistic programming library providing two monads (for

probability and measure, §2) and two new Metropolis-Hastings-based algorithms (§5, §7). The

methods are based on recent foundations from quasi-Borel spaces and synthetic probability theory
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(§4). We have shown that the resulting forms of laziness are a useful modelling idiom for a variety

of Bayesian models, including piecewise linear regression (§3.1.2), non-parametric clustering (§3.2),

Wiener process regression (§6.4), and non-parametric feature extraction (§6.5).
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