A model of Stochastic Memoization & Name Generation in Probabilistic Programming

<u>Younesse Kaddar</u>, Sam Staton University of Oxford

MFPS 2023

Summary

- 1. Deterministic vs stochastic memoization
- 2. Stochastic memoization: Clustering example
- 3. Stochastic memoization equations
- 4. Dataflow property
- 5. Minimal probabilistic language
- 6. Operational semantics
- 7. Denotational semantics
- 8. Soundness & Haskell implementation

Idea: **store** the result when a function is applied to an argument, **reuse it later** when the same call is made

<u>Idea</u>: **store** the result when a function is applied to an argument, **reuse it later** when the same call is made

x	is_prime x	
2 ⁸²⁵⁸⁹⁹³³ - 1	???	

Idea: **store** the result when a function is applied to an argument, **reuse it later** when the same call is made

X	is_prime x	
2 ⁸²⁵⁸⁹⁹³³ - 1	TRUE	
9	???	

<u>Idea</u>: **store** the result when a function is applied to an argument, **reuse it later** when the same call is made

x	is_prime x	
2 ⁸²⁵⁸⁹⁹³³ - 1	TRUE	
9	FALSE	
57	???	

<u>Idea</u>: **store** the result when a function is applied to an argument, **reuse it later** when the same call is made

x	is_prime x
2 ⁸²⁵⁸⁹⁹³³ - 1	TRUE
9	FALSE
57	TRUE
2 ⁸²⁵⁸⁹⁹³³ - 1	???

<u>Idea</u>: **store** the result when a function is applied to an argument, **reuse it later** when the same call is made

x	is_prime x
2 ⁸²⁵⁸⁹⁹³³ - 1	TRUE
9	FALSE
57	TRUE
2 ⁸²⁵⁸⁹⁹³³ - 1	TRUE

<u>Idea</u>: **store** the result when a function is applied to an argument, **reuse it later** when the same call is made

x	is_prime x
2 ⁸²⁵⁸⁹⁹³³ - 1	TRUE 🤨
9	FALSE
57	TRUE
2 ⁸²⁵⁸⁹⁹³³ - 1	TRUE

- Dynamic programming (variation on laziness)
- Over pure functions: "just" a speed-up (no semantic change)

With probability: **changes** the semantics!

e.g. Roy, Mansinghka, Goodman, Tenenbaum, NPB 2008 Wood, Archambeau, Gasthaus, James, Teh. ICML 2009.

With probability: **changes** the semantics!

1	<pre> f :: Double → f _ = uniform </pre>	Prob Doubl	.e
	X	fx	_
	0.1	0.3364	

e.g. Roy, Mansinghka, Goodman, Tenenbaum, NPB 2008 Wood, Archambeau, Gasthaus, James, Teh. ICML 2009.

With probability: **changes** the semantics!

1 f :: <i>Double</i> → <i>Prob Double</i> 2 f _ = uniform	•	•	•

e.g. Roy, Mansinghka, Goodman, Tenenbaum, NPB 2008 Wood, Archambeau, Gasthaus, James, Teh. ICML 2009.

x	fx	
0.1	0.8364	
0.3	0.5468	1,00

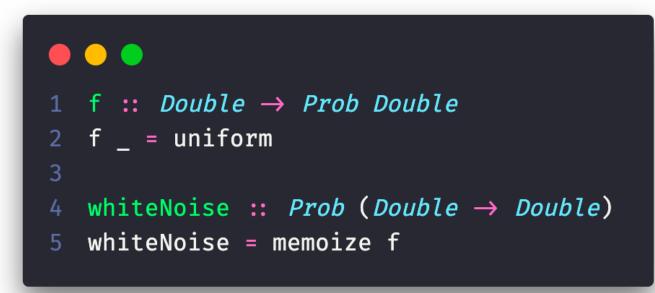
With probability: **changes** the semantics!

• •	
	<pre>:: Double → Prob Double = uniform</pre>

e.g. Roy, Mansinghka, Goodman, Tenenbaum, NPB 2008 Wood, Archambeau, Gasthaus, James, Teh. ICML 2009.

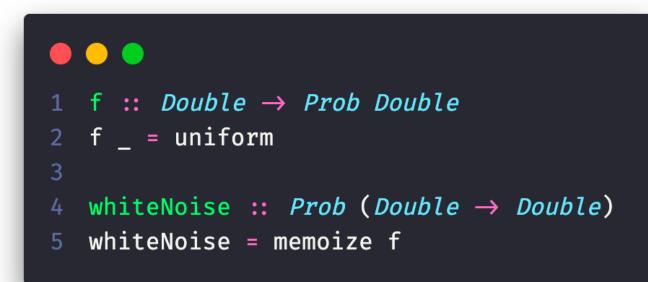
×	fx	
0.1	0.8364	
0.3	0.5468	
0.1	0.3484	

With probability: changes the semantics!



e.g. Roy, Mansinghka, Goodman, Tenenbaum, NPB 2008 Wood, Archambeau, Gasthaus, James, Teh. ICML 2009.

With probability: changes the semantics!



e.g. Roy, Mansinghka, Goodman, Tenenbaum, NPB 2008 Wood, Archambeau, Gasthaus, James, Teh. ICML 2009.

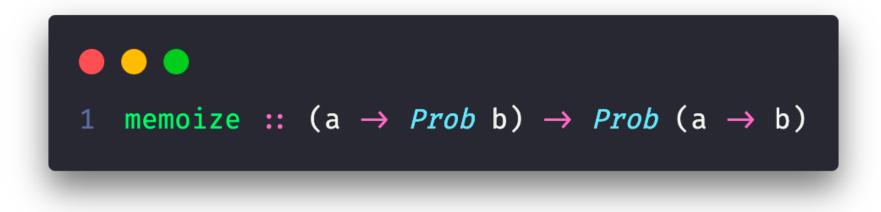
x	fx	
0.1	0.8364	*
0.3	0.5468	
0.1	0.8364	

With probability: changes the semantics!

e.g. Roy, Mansinghka, Goodman, Tenenbaum, NPB 2008 Wood, Archambeau, Gasthaus, James, Teh. ICML 2009.

Stochastic Memoization: Type

With probability: changes the semantics!



Non-parametric clustering (Dirichlet Process)

- <u>Objective</u>: Cluster MFPS attendees based on their preferences for different areas of mathematics and computer science.
- <u>Dataset</u>: Conference attendees and their preferences for various areas of mathematics and computer science
 - True for liking an area, False for disliking
- <u>Goal</u>: Identify distinct groups of attendees with similar preferences.

Non-parametric clustering (Dirichlet Process)

1. Randomly decide which proportion of individuals are in each cluster.

Non-parametric clustering (Dirichlet Process)

- 1. Randomly decide which proportion of individuals are in each cluster.
- 2. Assign a unique identifier to each cluster, from some space \mathbb{A} of identifiers.

Dirichlet process with a **diffuse** base measure on \mathbb{A}

(eg. normal distribution on $\mathbb{A} \cong \mathbb{R}$)

Non-parametric clustering (Dirichlet Process)

- 1. Randomly decide which proportion of individuals are in each cluster.
- 2. Assign a unique identifier to each cluster, from some space \mathbb{A} of identifiers.

Dirichlet process with a **diffuse** base measure on \mathbb{A}

(eg. normal distribution on $\mathbb{A} \cong \mathbb{R}$)

3. Assign attributes to the cluster identifiers.

Attributes: Probability distribution over the fields (Algebra, Geometry, etc.) Assignment: sample from a random function in $\mathbb{A} \rightarrow Attributes$, by

memoizing a Markov kernel.

Non-parametric clustering (Dirichlet Process)

- 1. Randomly decide which proportion of individuals are in each cluster.
- 2. Assign a unique identifier to each cluster, from some space \mathbb{A} of identifiers.

Dirichlet process with a **diffuse** base measure on \mathbb{A}

(eg. normal distribution on $\mathbb{A} \cong \mathbb{R}$)

3. Assign attributes to the cluster identifiers.

Attributes: Probability distribution over the fields (Algebra, Geometry, etc.) Assignment: sample from a random function in $\mathbb{A} \rightarrow Attributes$, by

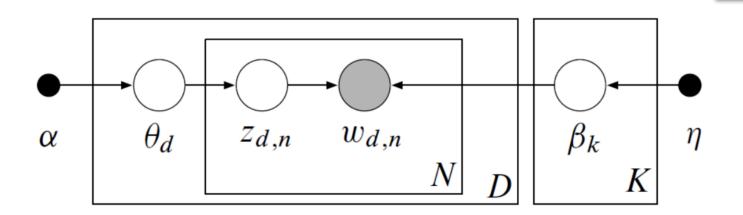
memoizing a Markov kernel.

4. Bayesian clustering: start with steps (1)-(3) as a reasonable *prior*, and combine it with observed data to arrive at a *posterior*.

```
data MFPSAttendees = Alice | Bob | Charlie
     deriving (Eq, Ord, Show, Enum, Bounded)
2
4 data Areas = Algebra | Geometry | Topology | Algorithms | PLT
     deriving (Eq, Ord, Show, Enum, Bounded)
7 type A = Double
9 dataset :: MFPSAttendees \rightarrow Areas \rightarrow Bool
10 dataset Alice Algebra = True
11 dataset Alice Geometry = True
12 dataset Alice _ = False
13 dataset Bob Algorithms = True
14 dataset Bob PLT = True
15 dataset Bob _ = False
16 dataset Charlie Topology = True
17 dataset Charlie _ = False
```

```
clusterAttributes :: \mathbb{A} \rightarrow \text{Prob} (Areas \rightarrow \text{Double})
    clusterAttributes x = do
       (ps :: [Double]) \leftarrow dirichlet [0.1, 0.1, 0.1, 0.1]
       return  \ a \rightarrow ps !! fromEnum a 
    memoClusterAttributes :: Prob (\mathbb{A} \rightarrow \text{Areas} \rightarrow \text{Double})
    memoClusterAttributes = memoize clusterAttributes
    clusterModel :: Meas [(MFPSAttendees, A, Areas \rightarrow Double)]
    clusterModel = do
10
       (\text{probClusters} :: \text{Prob } A) \leftarrow \text{sample} (dp \alpha uniform :: \text{Prob} (\text{Prob } A))
11
       (attributes :: A \rightarrow Areas \rightarrow Double) \leftarrow sample memoClusterAttributes
12
       let mathematicians = [Alice .. Charlie]
13
       forM mathematicians  \longrightarrow  do
14
15
         cluster \leftarrow sample probClusters
         let (probAreas :: Areas \rightarrow Double) = attributes cluster
16
         forM_ [Algebra .. PLT]  a \rightarrow do 
17
18
            score $ if dataset m a then probAreas a else 1 - probAreas a
         return (m, cluster, probAreas)
19
```

Going further: Latent Dirichlet Allocation (LDA)



- α and η are parameters of the prior distributions over θ and β
- θ_d is the distribution of topics for document d (real vector of length K)
- β_k is the distribution of words for topic k (real vector of length V)
- $z_{d,n}$ is the topic for the *n*th word in the *d*th document
- $w_{d,n}$ is the *n*th word of the *d*th document

e.g. Blei et al. NeurIPS 2002.

With probability: **changes** the semantics!

Key for

e.g. Roy, Mansinghka, Goodman, Tenenbaum, NPB 2008 Wood, Archambeau, Gasthaus, James, Teh. ICML 2009.

infinite-dimensional structures in non-parametrics
 (iid sequences, Gaussian process, CRP, IBP, etc)

With probability: **changes** the semantics!

Key for

e.g. Roy, Mansinghka, Goodman, Tenenbaum, NPB 2008 Wood, Archambeau, Gasthaus, James, Teh. ICML 2009.

- infinite-dimensional structures in non-parametrics (iid sequences, Gaussian process, CRP, IBP, etc)
- representation theorems

(à la de Finetti, Aldous-Hoover, etc)

With probability: **changes** the semantics!

Key for

e.g. Roy, Mansinghka, Goodman, Tenenbaum, NPB 2008 Wood, Archambeau, Gasthaus, James, Teh. ICML 2009.

- infinite-dimensional structures in non-parametrics
 (iid sequences, Gaussian process, CRP, IBP, etc)
- representation theorems

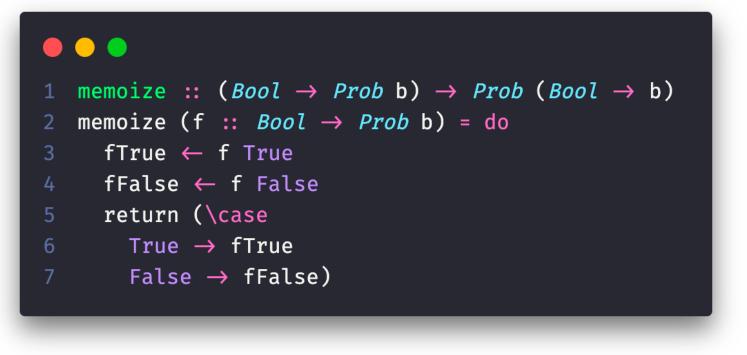
(à la de Finetti, Aldous-Hoover, etc)

in practical probabilistic programming

(Church, WebPPL, Hansei, BLOG, etc)

Stochastic Memoization Finite Domain a

No problem!



 $(bool \rightarrow Prob b) \cong (Prob b, Prob b) \xrightarrow{double-strength} Prob (b,b).$

Stochastic Memoization Enumerable Domain a

Laziness trick

Example: Poisson Point Process

Sample all the (exp distributed) interoccurrence times at once

→ cf. Alex Simpson's Talk

- 1 poissonPPMemo :: Double → Double → Prob [Double]
- 2 poissonPPMemo lower rate = do
- intervals \leftarrow memoize $(_ :: Int) \rightarrow$ exponential rate
- 4 return \$ scanl (+) lower \$ map intervals [1..]

Non-Enumerable Domain?

Open problem!

Stochastic Memoization Non-Enumerable Domain?

Def:

Let a be an object with an equality predicate (a, a)→bool

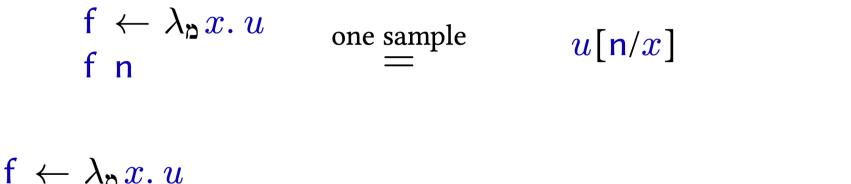
A *diffuse distribution* is a term p such that:

do {x ← p ; y ← p ; return (x == y)}
is semantically equal to
return False

NB: equations satisfied by a diffuse probability distribution = equations satisfied by name generation

Memoization equations

<u>Notation</u>: if f is of the form $\lambda x. u$, memoize (f) is written $\lambda_{n}x. u$.



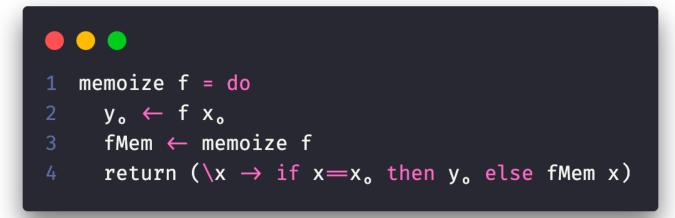
Memoization law

<u>Def</u>: A strong monad Prob is said to support stochastic memoization of type $a \rightarrow b$ if it is equipped with a morphism memoize :: ($a \rightarrow Prob b$) $\rightarrow Prob (a \rightarrow b)$ satisfying:

•••

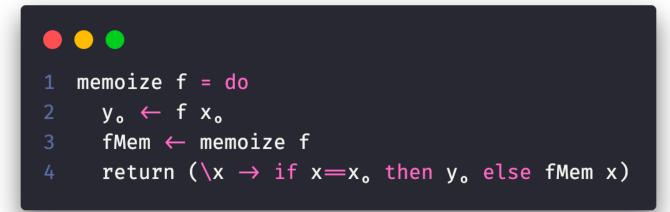
- 1 memoize f = do
- $2 y_o \leftarrow f x_o$
- 3 fMem ← memoize f
- 4 return ($x \rightarrow if x = x_{\circ} then y_{\circ} else fMem x$)

Memoization law

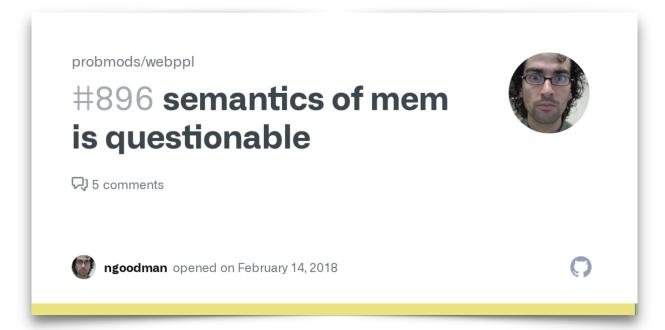


The intuitive implementation uses state!

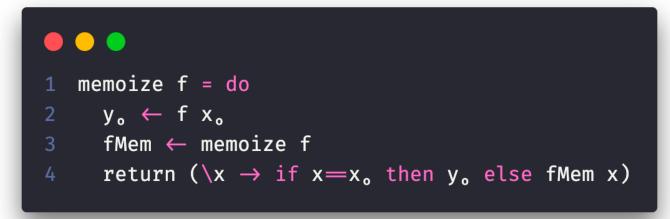
Memoization law



The intuitive implementation uses state!



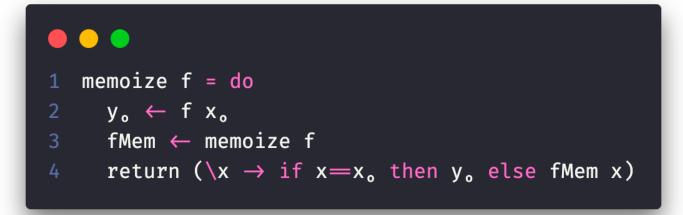
Memoization law



The intuitive implementation uses state!

BUT we want (non-negotiable): the **dataflow property**

Memoization law

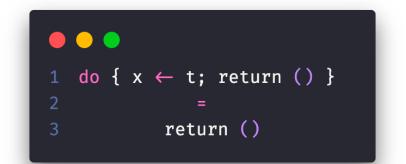


The intuitive implementation uses state!

Dataflow property

● ● ●
1 do { x ← t; y ← u; return (x,y) }
2 =
3 do { y ← u; x ← t; return (x,y) }

→ cf. Paolo's/Dario's Talks



Program lines can be **reordered** and **discarded** if dataflow is preserved.

The monad is **commutative** and **affine**.

 \iff

The Kleisli category is a **semi-cartesian monoidal** category.

e.g. Cho, Jacobs MSCS 2019 Fritz, Adv Math 2021 (Markov categories)

In probability: **Fubini theorem** and **marginalisation**/ **normalisation** of probability measures

Dataflow property

State violates the dataflow property (state monad not commutative)

Dataflow property

State violates the dataflow property (state monad not commutative)

BUT

Memoization validates dataflow

- Not intrinsically stateful
- rather: linked to pure probability theory

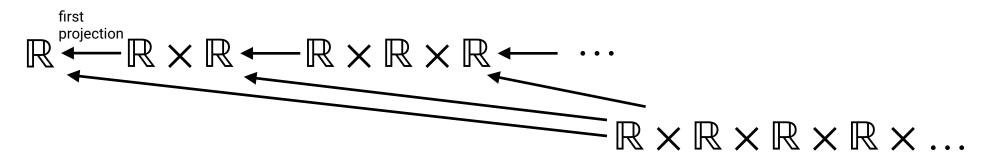
i Kolmogorov's extension theorem?

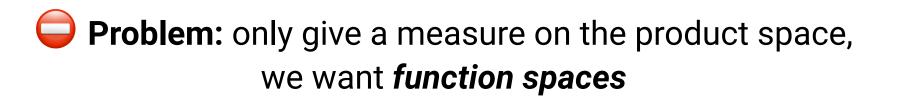
Kolmogorov extension

In traditional probability theory:

Kolmogorov extension: TFAE:

a consistent family of finite dimensional probability distributions; an infinite dimensional probability distribution.





→ Categorical probability: Quasi-Borel spaces (cartesian closed) <u>Unfortunately:</u> QBSes do not support memoization

Objective Challenge

Show that the following items are consistent:

- A probabilistic language with the dataflow property
- A type A with a diffuse probability distribution
- A type bool with Bernoulli probability distributions
- A type of functions $A \rightarrow bool with function application$
- Stochastic memoization of constant Bernoulli functions

Interface

•••

```
1 -- Atoms (randomly generated fresh names)
2 new_atom :: A
3
4 -- Function labels:
5 -- type to be thought of as A → Bool
6 new_function :: F
7
8 -- Application operator making every function memoized:
9 -- type of a bipartite graph
10 (@) :: (F, A) → Bool
```

Language (fine-grained CBV)

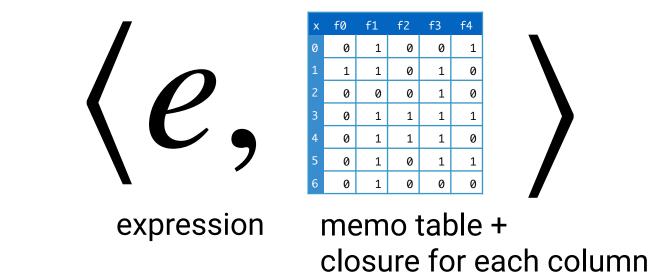
Typing judgements				
Typed values:				
_	_		$\Gamma arrow v: A \qquad \Gamma arrow w: B$	
$\overline{\Gamma} \stackrel{\mu}{\vdash} true : bool$	$\overline{\Gamma} eq$ false : bool	$\Gamma, x: A, \Gamma' \stackrel{{} \bowtie}{} x: A$	$\Gamma \stackrel{{} \!$	
Typed computations:				
	$\Gamma \nvDash v: A$ $\Gamma \nvDash u: A$ $\Gamma, x: A \trianglerighteq t: B$			
	$\Gamma \vdash return(v) : A \qquad \qquad \Gamma \vdash let val \ x \ \leftarrow \ u in t : B$			
$\Gamma riangle v: bool$	$\Gamma \vdash u : A \qquad \Gamma \vdash t :$	$\underline{A} \qquad \underline{\Gamma \nvDash v : A \times B}$	$\Gamma, x: A, y: B \vdash t: C$	
$\Gamma \vdash \text{if } v \text{ then } u \text{ else } t : A \qquad \qquad \Gamma \vdash \text{match } v \text{ as } (x, y) \text{ in } t : C$			n v as (x,y) in $t:C$	
$ \Gamma \nvDash v : \mathbb{A}$ $\Gamma \nvDash w : \mathbb{A}$		$\mathbb{A} \qquad \Gamma \nvDash w : \mathbb{A}$		
$\overline{\Gamma \vdash flip(\theta) : bool} \qquad \overline{\Gamma \vdash fresh() : \mathbb{A}} \qquad \overline{\Gamma \vdash (v = w) : bool}$				
$\Gamma, x: \mathbb{A} \nvDash u: bool$ $\underline{\Gamma \nvDash v: \mathbb{F}}$ $\Gamma \trianglerighteq w: \mathbb{A}$				
$\Gamma \vdash \lambda_{a} x. u : \mathbb{F}$ $\Gamma \vdash (v@w) : bool$				

Name generation, probabilistic effects, memoization

Extended expression typing judgements. Here, $(\mathfrak{f},a) \notin \Delta \cup \Delta_1 \cup \Delta_2$.			
$\begin{array}{ c c c c c }\hline & \Gamma \vDash u:A \\ \hline & \Gamma \upharpoonright \emptyset \nvDash u:A \\ \hline & \Gamma \upharpoonright (\mathfrak{f},a), \Delta \vDash \{\!\!\{u\}\!\}_{\gamma}^{\mathfrak{f},a}:A \\ \hline \end{array}$	$\frac{\Gamma \mid \Delta_1 \vdash u : A \qquad \Gamma, x : A \mid \Delta_2 \vdash t : B}{\Gamma \mid \Delta_1, \Delta_2 \vdash let val \ x \ \leftarrow \ u in \ t : B}$		
$\Gamma \mid \Delta_1 \vdash u : A \qquad \Gamma, x : A \mid \Delta_2 \vdash t : B$	$\Gamma \mid \Delta_1 \nvDash u : A \qquad \Gamma, x : A \mid \Delta_2 \nvDash t : B$		
$\boxed{\Gamma \mid (\mathbf{f}, a), \Delta_1, \Delta_2 \vdash let val x \leftarrow \{\!\!\{u\}\!\!\}^{\mathbf{f}, a}_{\gamma} in t : B}$	$\overline{\Gamma \mid (\mathbf{f}, a), \Delta_1, \Delta_2} \stackrel{\wp}{\vdash} let val \ x \ \leftarrow \ u in \ \{\!\!\{t\}\!\!\}_{\gamma}^{\mathbf{f}, a} : B$		
$\Gamma \stackrel{arphi}{=} v: bool$ $\Gamma \mid \Delta_1 \stackrel{arphi}{=} u: A$ $\Gamma \mid \Delta_2 \stackrel{arphi}{=} t: A$			
$\Gamma \mid \Delta_1, \Delta_2 \models$ if v then u else $t: A$			
$\Gamma rightarrow v: bool$ $\Gamma \mid \Delta_1 eq u: A$ $\Gamma \mid \Delta_2 eq t: A$	$\Gamma Dash v: bool \Gamma \mid \Delta_1 Dash u: A \Gamma \mid \Delta_2 Dash t: A$		
$\boxed{\Gamma \mid (\mathfrak{f}, a), \Delta_1, \Delta_2 \vdash \text{ if } v \text{ then } \{\!\!\{u\}\!\!\}_{\gamma}^{\mathfrak{f}, a} \text{ else } t : A}$	$\Gamma \mid (\mathfrak{f},a), \Delta_1, \Delta_2 \stackrel{arphi}{\leftarrow} if \ v then \ u else \{\!\!\{t\}\!\!\}^{\mathfrak{f},a}_\gamma : A$		
$\frac{\Gamma \stackrel{\textup{!`}}{\vdash} v: A \times B \qquad \Gamma, x: A, y: B \mid \Delta \stackrel{\textup{!`}}{\vdash} t: C}{\Gamma \mid \Delta \stackrel{\textup{!`}}{\vdash} match v as (x, y) in t: C}$	$\frac{\Gamma \nvDash v : A \times B \qquad \Gamma, x : A, y : B \mid \Delta \vDash t : C}{\Gamma \mid (\mathbf{f}, a), \Delta \vDash match v as (x, y) in \ \{\!\!\{t\}\!\!\}_{\gamma}^{\mathbf{f}, a} : C}$		

Memoization stack Δ and memoization contexts

Configurations (intuition):



Sound for our denotational semantics, but works more generally.

Terminal computations r, Redexes ho, and Reduction contexts $\mathcal{C}[-]$

r ::= return(v) | $\lambda_{a} x. u$ | fresh()

 $\begin{array}{lll} \rho & & ::= & |\operatorname{et} \operatorname{val} x \ \leftarrow \ r \operatorname{in} u & | \ \{\!\!\{\operatorname{return}(v)\}\!\}_{\gamma}^{\mathrm{f},a} & & \operatorname{where} \mathrm{f} \in \mathfrak{g}_L, \ a \in \mathfrak{g}_R, \ \gamma \in \operatorname{Tree}(2 + \mathfrak{g}_L + \mathfrak{g}_R)^{\operatorname{Var}} \\ & | \ \operatorname{match} v \operatorname{as}(x,y) \operatorname{in} t & | \ \operatorname{if} v \operatorname{then} t \operatorname{else} u & | \ \operatorname{flip}(\theta) & | \ (v = w) & | \ (v@w) \end{array}$

 $\begin{array}{l} \textbf{Configurations} \left(\gamma, u, \mathfrak{g}, \lambda\right) \\ \gamma \in \mathsf{Tree}(2 + \mathfrak{g}_L + \mathfrak{g}_R)^{\mathsf{Var}} \text{ is a context value.} \\ u \text{ is an extended expression } \Gamma \mid \Delta \vDash u : A. \\ \mathfrak{g} \stackrel{\mathrm{def}}{=} (\mathfrak{g}_L, \mathfrak{g}_R, E) \text{ is a partial graph.} \\ \lambda \colon \mathfrak{g}_L \to \mathsf{Closures, where } \mathsf{Closures} \stackrel{\mathrm{def}}{=} \left\{ (\lambda_{\mathfrak{p}} x. u, \gamma) \mid \Gamma \vDash \lambda_{\mathfrak{p}} x. u : \mathbb{F} \text{ and } \gamma \in (\!\! \Gamma \!\!) \right\} \end{array}$

Enables us to define a small-step operational semantics

$$(\gamma, \mathsf{let} \mathsf{ val} x \leftarrow \mathsf{return}(v) \mathsf{in} u, \mathfrak{g}, \lambda)$$

$$(\gamma, \{\!\!\{\mathsf{return}(v)\}\!\}_{\gamma'}^{(\mathrm{f},a)}, \mathfrak{g}, \lambda) \longrightarrow$$

$$(\gamma, \mathsf{let} \mathsf{ val} x \leftarrow \lambda_{\mathtt{p}} y. u \mathsf{ in} t, \mathfrak{g}, \lambda)$$

$$(\gamma, \mathsf{let} \mathsf{ val} x \leftarrow \mathsf{fresh}() \mathsf{in} t, \mathfrak{g}, \lambda)$$

 $(\gamma, (v@w), \mathfrak{g}, \lambda)$

$$\begin{split} &(\gamma, v = w, \mathfrak{g}, \lambda) \\ &(\gamma, \mathsf{flip}(\theta), \mathfrak{g}, \lambda) \\ &(\gamma, \mathsf{match}\, v \, \mathsf{as}\, (x, y) \, \mathsf{in}\, t, \mathfrak{g}, \lambda) \end{split}$$

 $(\gamma, {\sf if} \, v \, {\sf then} \, t \, {\sf else} \, u)$

 $(\gamma \sqcup \{x \mapsto (v)_{\gamma}\}, u, \mathfrak{g}, \lambda)$ $\begin{cases} (\gamma', \operatorname{return}(\langle\!\! v \rangle\!\!)_{\gamma}), (\mathfrak{g}_L, \mathfrak{g}_R, E \cup \{f \xrightarrow{\langle\!\! v \rangle\!\!}_{\gamma} a\}), \lambda) \\ & \text{if } \langle\!\! v \rangle\!\!\rangle_{\gamma} \in \{\operatorname{true}, \operatorname{false}\} \\ \text{else, failure (cannot memoize a non-boolean function)} \end{cases}$ $\rightarrow \qquad (\gamma \sqcup \{x \mapsto f\}, t, (\mathfrak{g}_L \sqcup \{f\}, \mathfrak{g}_R, E \sqcup \{f \xrightarrow{\perp} a\}_{a \in \mathfrak{g}_R}),$ $\lambda \sqcup \{ \mathfrak{f} \mapsto (\lambda_{\mathfrak{a}} y. u, \gamma) \})$ $\rightarrow \qquad (\gamma \sqcup \{x \mapsto a\}, t,$ $(\mathfrak{g}_L,\mathfrak{g}_R\sqcup\{a\},\mathfrak{g}_R,E\sqcup\{\mathfrak{f}\xrightarrow{\perp}a\}_{\mathfrak{f}\in\mathfrak{g}_L}),\lambda)$ $\rightarrow \begin{cases} (\gamma, \mathsf{return}(\beta), \mathfrak{g}, \lambda) & \text{if } \beta \stackrel{\text{def}}{=} E((v)_{\gamma}, (w)_{\gamma}) \neq \bot \\ (\gamma_0 \sqcup \{y \mapsto (w)_{\gamma}\}, \{\!\!\{u\}\!\}_{\gamma}^{\mathbf{f}, a}, \mathfrak{g}, \lambda) & \text{else,} \\ & \text{where } \lambda((v)_{\gamma}) \stackrel{\text{def}}{=} (\lambda_{\mathbf{p}} y. u, \gamma_0) \end{cases}$ \rightarrow (γ , return(β), \mathfrak{g} , λ) where $\beta \stackrel{\text{def}}{=} (\langle v \rangle_{\gamma} = \langle w \rangle_{\gamma})$ $\stackrel{\text{with proba. } \theta}{\to} \quad (\gamma, \mathsf{return}(\beta), \mathfrak{g}, \lambda) \quad \text{ where } \beta \in \{\mathsf{true}, \mathsf{false}\}$ $\rightarrow \qquad (\gamma \sqcup \{x \mapsto (v)_{\gamma}, y \mapsto (w)_{\gamma}\}, t, \mathfrak{g}, \lambda)$ $\rightarrow \qquad \left\{ \begin{array}{ll} (\gamma,t,\mathfrak{g},\lambda) & \text{ if } v = \mathsf{true} \\ (\gamma,u,\mathfrak{g},\lambda) & \text{ else, if } v = \mathsf{false} \end{array} \right.$

Example

 \rightarrow

 \rightarrow

$$\begin{pmatrix} \emptyset, & \text{let val } x_0 \leftarrow \text{fresh}() \text{ in} \\ & \text{let val } f_1 \leftarrow \lambda_{\texttt{D}} x. \text{ (let val } b \leftarrow (x = x_0) \text{ in} \\ & \text{if } b \text{ then flip}(\frac{1}{2}) \text{ else false) in} \\ & \text{let val } f_2 \leftarrow \lambda_{\texttt{D}} y. f_1 @ y \text{ in } f_2 @ x_0, \\ (\emptyset, \emptyset, \emptyset), & \emptyset \end{pmatrix}$$

$$\begin{pmatrix} \{x_0 \mapsto a_0\}, \\ \text{let val } f_1 \leftarrow \lambda_{n} x. \text{ (let val } b \leftarrow (x = x_0) \text{ in} \\ \text{if } b \text{ then flip}(\frac{1}{2}) \text{ else false) in} \\ \text{let val } f_2 \leftarrow \lambda_{n} y. f_1@y \text{ in } f_2@x_0, \\ (\emptyset, \{a_0\}, \emptyset), \emptyset \end{pmatrix}$$

$$\rightarrow^{2} \Big(\underbrace{\{x_{0} \mapsto a_{0}, f_{1} \mapsto f_{1}, f_{2} \mapsto f_{2}\}}_{(\{f_{1}, f_{2}\}, \{a_{0}\}, \{f_{1} \stackrel{\perp}{\rightarrow} a_{0}, f_{2} \stackrel{\perp}{\rightarrow} a_{0}\})}, \\ \{f_{1} \mapsto (\lambda_{p} x. \text{ let val } b \leftarrow (x = x_{0}) \text{ in} \\ \text{ if } b \text{ then flip}(\frac{1}{2}) \text{ else false}), \{x_{0} \mapsto a_{0}\}), \\ f_{2} \mapsto (\lambda_{p} y. f_{1}@y, \{x_{0} \mapsto a_{0}, f_{1} \mapsto f_{1}\})\}\Big)$$

$$\begin{split} \underbrace{\left\{ \overleftarrow{\{x_0 \mapsto a_0, f_1 \mapsto f_1, y \mapsto a_0\}}_{\gamma_0}, \quad \{\!\{f_1 @ y\}\!\}_{\gamma_0}^{f_2, a_0}, \\ (\{f_1, f_2\}, \{a_0\}, \{f_1 \xrightarrow{\perp} a_0, f_2 \xrightarrow{\perp} a_0\}), \\ \{f_1 \mapsto (\lambda_{\tt D} x. \text{ let val } b \leftarrow (x = x_0) \text{ in} \\ & \text{ if } b \text{ then flip}(\frac{1}{2}) \text{ else false}), \{x_0 \mapsto a_0\}), \\ f_2 \mapsto (\lambda_{\tt D} y. f_1 @ y, \{x_0 \mapsto a_0, f_1 \mapsto f_1\})\} \Big) \end{split}$$

Example

$$\begin{array}{l} \leftrightarrow \left(\{x_0 \mapsto a_0, \, x \mapsto a_0\}, \\ \left\{ \left\{ \left\{ \text{let val } b \ \leftarrow \ (x = x_0) \text{ in} \\ & \text{ if } b \text{ then flip}(\frac{1}{2}) \text{ else false} \right\} \right\}_{\gamma_1}^{f_1, a_0} \right\} \right\}_{\gamma_0}^{f_2, a_0}, \\ \left(\{f_1, f_2\}, \ \{a_0\}, \{f_1 \xrightarrow{\perp} a_0, \, f_2 \xrightarrow{\perp} a_0\}), \\ \left\{ f_1 \mapsto (\lambda_{\texttt{D}} x. \text{ let val } b \ \leftarrow \ (x = x_0) \text{ in} \\ & \text{ if } b \text{ then flip}(\frac{1}{2}) \text{ else false}), \{x_0 \mapsto a_0\}), \\ f_2 \mapsto (\lambda_{\texttt{D}} y. f_1 @ y, \{x_0 \mapsto a_0, f_1 \mapsto f_1\}) \} \right) \end{array}$$

$$\begin{split} & \left(\{x_0 \mapsto a_0, \, x \mapsto a_0, \, b \mapsto \mathsf{true} \}, \\ & \left\{ \!\! \left\{ \{ \mathsf{if} \, b \, \mathsf{then} \, \mathsf{flip}(\frac{1}{2}) \, \mathsf{else} \, \mathsf{false} \} \!\! \right\}_{\gamma_1}^{f_1, a_0} \right\} \!\! \right\}_{\gamma_0}^{f_2, a_0}, \\ & \left(\{f_1, f_2\}, \, \{a_0\}, \{f_1 \xrightarrow{\perp} a_0, \, f_2 \xrightarrow{\perp} a_0\} \right), \\ & \left\{ f_1 \mapsto (\lambda_{\mathfrak{p}} x. \, \mathsf{let} \, \mathsf{val} \, b \, \leftarrow \, (x = x_0) \, \mathsf{in} \\ & \quad \mathsf{if} \, b \, \mathsf{then} \, \mathsf{flip}(\frac{1}{2}) \, \mathsf{else} \, \mathsf{false}), \{x_0 \mapsto a_0\} \right), \\ & f_2 \mapsto (\lambda_{\mathfrak{p}} y. \, f_1 @ y, \{x_0 \mapsto a_0, f_1 \mapsto f_1\}) \} \Big) \end{split}$$

$$\begin{array}{l} \rightarrow \left(\{x_0 \mapsto a_0, \ x \mapsto a_0, \ b \mapsto \mathsf{true}\}, \\ \left\{ \left\{ \{\mathsf{flip}(\frac{1}{2})\}_{\gamma_1}^{f_1, a_0} \right\} \right\}_{\gamma_0}^{f_2, a_0}, \\ (\{f_1, f_2\}, \ \{a_0\}, \{f_1 \stackrel{\perp}{\to} a_0, \ f_2 \stackrel{\perp}{\to} a_0\}), \\ \{f_1 \mapsto (\lambda_{\mathfrak{p}} x. \ \mathsf{let} \, \mathsf{val} \ b \leftarrow (x = x_0) \ \mathsf{in} \\ \mathsf{if} \ b \mathsf{then} \ \mathsf{flip}(\frac{1}{2}) \ \mathsf{else} \ \mathsf{false}), \ \{x_0 \mapsto a_0\}), \\ f_2 \mapsto (\lambda_{\mathfrak{b}} y. \ f_1 \stackrel{\odot}{\to} g_0, \ f_1 \mapsto f_1, \ f_2 \mapsto f_2\}, \\ \mathsf{vertual} \ \mathsf{fund} \ \mathsf$$

Proposition:

have indeed the same (big-step) operational semantics

Probabilistic local state monad

Theorem.
c.f. Plotkin Power FOSSACS 2002.
Kaddar, Staton, MFPS 2023.

$$T(X)(g) \stackrel{\text{def}}{=} \left(P_{\text{f}} \int^{g \hookrightarrow h} \left(X(h) \times [0,1]^{(h-g)_L} \right) \right)^{[0,1]^{g_L}}$$
defines a commutative affine monad.

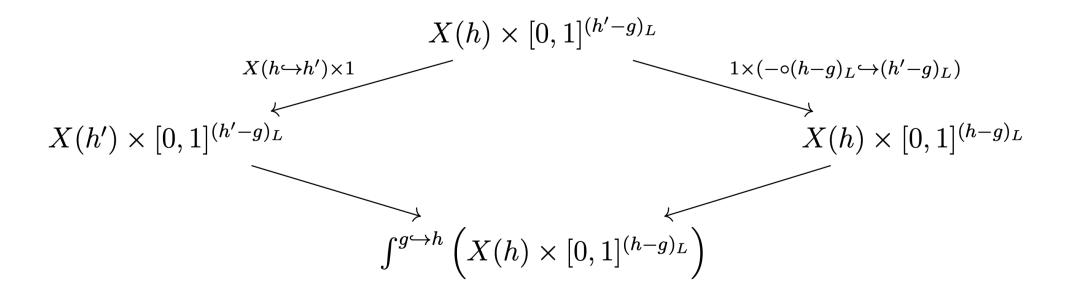
For all covariant presheaf X: $BiGrph_{emb} \rightarrow Set$ and bipartite graph (bigraph) g

$$T(X)(g \stackrel{\iota}{\hookrightarrow} g') = \begin{cases} \left(P_{\mathrm{f}} \int^{g \hookrightarrow h} X(h) \times [0,1]^{(h-g)_{L}} \right)^{[0,1]^{g_{L}}} \longrightarrow \left(P_{\mathrm{f}} \int^{g' \hookrightarrow h'} X(h') \times [0,1]^{(h'-g')_{L}} \right)^{[0,1]^{g'_{L}}} \\ \vartheta \longmapsto \lambda' \mapsto \operatorname{let} \vartheta(\lambda'\iota_{L}) = \left\langle \overrightarrow{p} \mid [x_{h},\lambda^{h}]_{g} \right\rangle_{h} \operatorname{in} \left\langle \overrightarrow{p} \mid [X(h \hookrightarrow h \coprod_{g} g')(x_{h}),\lambda^{h}]_{g'} \right\rangle_{h} \end{cases}$$

Gives a denotational semantics to our language

Probabilistic local state monad

Garbage collection of the coend:



Denotational semantics

 $\llbracket \mathbb{F} \rrbracket \stackrel{\text{def}}{=} \mathbf{BiGrph}_{emb}(\circ, -) \quad \llbracket \mathbb{A} \rrbracket \stackrel{\text{def}}{=} \mathbf{BiGrph}_{emb}(\bullet, -) \quad \text{so that } \llbracket \mathbb{F} \rrbracket(g) \cong g_L, \llbracket \mathbb{A} \rrbracket(g) \cong g_R.$

A computation of type:

 A returns the label of an already existing atom or a fresh one with its connections to the already existing functions:

$$T(\llbracket A \rrbracket)(g) \cong P_{f}(g_{R} + 2^{g_{L}})^{[0,1]^{g_{L}}}$$

 F returns the label of an already existing function or creates a new function with its connections to already existing atoms and a fixed probabilistic bias:

 $T(\llbracket \mathbb{F} \rrbracket)(g) \cong P_{\mathrm{f}}(g_L + 2^{g_R} \times [0,1])^{[0,1]^{g_L}}$

Denotational semantics

 $\llbracket v @w \rrbracket_g : \llbracket \Gamma, v : \mathbb{F}, w : \mathbb{A} \rrbracket(g) \to [0, 1]^{[0, 1]^{g_L}}$ $\llbracket v @w \rrbracket \stackrel{\text{def}}{=} 1 \times (\llbracket \Gamma \rrbracket \times \llbracket \mathbb{F} \rrbracket \times \llbracket \mathbb{A} \rrbracket) \xrightarrow{\eta \times (! \times \mathcal{E})} T(\llbracket \text{bool} \rrbracket)^{\llbracket \text{bool} \rrbracket} \times \llbracket \text{bool} \rrbracket \stackrel{\text{ev}}{\longrightarrow} T(\llbracket \text{bool} \rrbracket)$

$$\llbracket v = w \rrbracket_g : \llbracket \Gamma, v : \mathbb{A}, w : \mathbb{A} \rrbracket(g) \to [0, 1]^{[0, 1]^{g_L}}$$
$$\llbracket v = w \rrbracket \stackrel{\text{def}}{=} \llbracket \Gamma \rrbracket \times \llbracket \mathbb{A} \rrbracket^2 \cong 1 \times \llbracket \Gamma \rrbracket \times \Big(\, \mathfrak{L}(\bullet) + \mathfrak{L}(\bullet + \bullet) \Big) \xrightarrow{\eta \times ! \times \left[! \, ; \, \iota_{\mathsf{true}}, \, ! \, ; \, \iota_{\mathsf{false}} \right]} T(\llbracket \mathsf{bool} \rrbracket)^{\llbracket \mathsf{bool}} \times \llbracket \mathsf{bool} \rrbracket \stackrel{\text{ev}}{\to} T(\llbracket \mathsf{bool} \rrbracket)$$

 $\llbracket \mathsf{fresh}() \rrbracket_g : \llbracket \Gamma \rrbracket(g) \to T(\llbracket \mathbb{A} \rrbracket)(g)$

$$\llbracket \mathsf{fresh}() \rrbracket_g \colon \left\{ \begin{array}{l} 2^k \times \mathbf{BiGrph}_{emb}(\circ, g)^\ell \times \mathbf{BiGrph}_{emb}(\bullet, g)^m \to P_{\mathbf{f}}(g_R + 2^{g_L})^{[0,1]^{g_L}} \\ -, -, - \mapsto \lambda \mapsto \left\langle \frac{1}{Z} \prod_{\mathbf{f} \in g_L} \lambda(\mathbf{f})^{E^h(\mathbf{f}, a_h(\bullet))} (1 - \lambda(\mathbf{f}))^{1 - E^h(\mathbf{f}, a_h(\bullet))} \left| \left[\underbrace{\bullet}_{\cong (h-g)_R} \overset{a_h}{\longrightarrow} h, ! \right]_g \right\rangle_{h \in R_g} \right\}$$

Denotational semantics

Def: A function $\lambda_{\mathfrak{a}} x$. u is *freshness-invariant* if, for every $g, b^k \in 2^k, \kappa_i : \circ \hookrightarrow g, \tau_j : \bullet \hookrightarrow g$ and $\lambda \in [0, 1]^{g_L}$, we have (where ι_1, ι_2 are the coprojections):

$$\forall e \in 2^{g_L}, \, \llbracket u \rrbracket_g \big(b^k, \, (\circ \stackrel{\kappa_i}{\hookrightarrow} g \stackrel{\iota_1}{\hookrightarrow} g +_e \bullet)_i, \, (\bullet \stackrel{\tau_j}{\hookrightarrow} g \stackrel{\iota_1}{\hookrightarrow} g +_e \bullet)_j, \, \bullet \stackrel{\iota_2}{\hookrightarrow} g +_e \bullet, \, \lambda \big) \text{ is a constant } \tilde{p}_u$$

$$\llbracket \lambda_{\mathbf{p}} x. u \rrbracket_{g} : \begin{cases} 2^{k} \times \mathbf{BiGrph}_{emb}(\circ, g)^{\ell} \times \mathbf{BiGrph}_{emb}(\bullet, g)^{m} \to P_{\mathbf{f}}(g_{L} + 2^{g_{R}} \times [0, 1])^{[0, 1]^{g_{L}}} \\ b^{k}, \underbrace{(\circ \stackrel{\kappa_{i}}{\longrightarrow} g)_{i}}_{(\bullet \stackrel{\tau_{j}}{\longrightarrow} g)_{j}} \mapsto \lambda \mapsto \left\langle \frac{1}{Z} \prod_{a \in g_{R}} p_{a}^{E^{h}(f_{h}(\circ), a)} (1 - p_{a})^{1 - E^{h}(f_{h}(\circ), a)} \left| \underbrace{[\circ \stackrel{\tau_{j}}{\longrightarrow} f_{h}}_{\cong (h - g)_{L}} h, _ \mapsto \tilde{p}_{u} \right]_{g} \right\rangle_{h \in L_{g}} \end{cases}$$

where $p_a \stackrel{\text{def}}{=} \llbracket u \rrbracket_g (b^k, (\circ \stackrel{\kappa_i}{\hookrightarrow} g)_i, (\bullet \stackrel{\tau_j}{\hookrightarrow} g)_j, \bullet \stackrel{a}{\hookrightarrow} g, \lambda)$ for every $a \in g_R$, and \tilde{p}_u is as in Def. 5.8. As a result,

Theorem.

The probabilistic local state monad T supports stochastic memoization for freshness-invariant functions (so, in particular, constant Bernoulli functions).

Soundness

Configurations of the form $(\gamma, e, \mathfrak{g}, \lambda)$, where e is of type A, can be denotationally interpreted as

$$\llbracket (\gamma, e, \mathfrak{g}, \lambda) \rrbracket \stackrel{\text{def}}{=} \sum_{\tilde{e} \in 2^{U_{\mathfrak{g}}}} \prod_{(\mathbf{f}, a) \in U_{\mathfrak{g}}} \lambda(\mathbf{f})^{\tilde{e}(\mathbf{f}, a)} (1 - \lambda(\mathbf{f}))^{1 - \tilde{e}(\mathbf{f}, a)} \llbracket u \rrbracket_{\mathfrak{g}_{\tilde{e}}}(\gamma, \lambda) \in T(A)_{\mathfrak{g}_{\tilde{e}}}(\gamma)(\lambda)$$

where $U_{\mathfrak{g}} \stackrel{\text{def}}{=} \{(\mathfrak{f}, a) \mid E(\mathfrak{f}, a) = \bot\} \subseteq \mathfrak{g}_L \times \mathfrak{g}_R \text{ and } \mathfrak{g}_{\tilde{e}} \text{ extends } \mathfrak{g} \text{ according to } \tilde{e} \colon E(\mathfrak{f}, a) = \tilde{e}(\mathfrak{f}, a) \text{ for all } (\mathfrak{f}, a) \in U_{\mathfrak{g}}.$

Theorem.

The denotational semantics is sound with respect to the operational semantics.

$$\llbracket (\gamma, e, \mathfrak{g}, \lambda) \rrbracket \cong \sum_{\substack{(\gamma, e, \mathfrak{g}, \lambda) \to (\gamma', e', \mathfrak{g}', \lambda') \\ \text{with proba. } p}} p \cdot \llbracket (\gamma', e', \mathfrak{g}', \lambda') \rrbracket$$

Haskell Toy Implementation

•••

```
1 smallStep :: Expr a \rightarrow EnvVal \rightarrow T (ExprOrValue a)
```

```
3 bigStep :: Expr a \rightarrow EnvVal \rightarrow T (Value a)
```

```
4
```

2

```
5 den :: Expr a \rightarrow EnvVal \rightarrow T (Value a)
```

https://github.com/youqad/stochastic-memoization-implementation

Conclusion Challenge

Show that the following items are consistent:

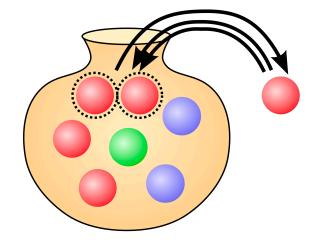
- A probabilistic language with the dataflow property
- A type A with a diffuse probability distribution
- A type bool with Bernoulli probability distributions
- A type of functions A → bool with function application
- Stochastic memoization of constant Bernoulli functions

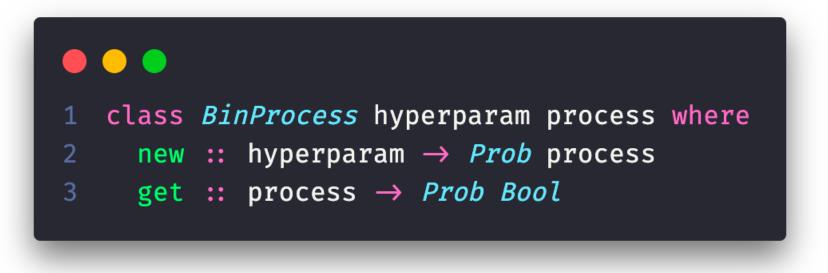
Summary

- 1. Deterministic vs stochastic memoization
- 2. Stochastic memoization: Clustering example
- 3. Stochastic memoization equations
- 4. Dataflow property
- 5. Minimal probabilistic language
- 6. Operational semantics
- 7. Denotational semantics
- 8. Soundness & Haskell implementation

Pólya's Urn and de Finetti

Staton, Stein, Yang, Ackermann, Freer, Roy, ICALP 2018





Pólya's Urn and de Finetti

Staton, Stein, Yang, Ackermann, Freer, Roy, ICALP 2018

- - -

- 1 class *BinProcess* hyperparam process where
- 2 **new :: hyperparam →** *Prob* **process**
- $get :: process \rightarrow Prob Bool$

• • •

```
newtype Polya = Polya (IORef (Int, Int))
   instance BinProcess (Int, Int) Polya where
     new (i, j) = return
       $ Polya $ unsafePerformIO
       $ newIORef (i, j)
     get (Polya ref) = do
       let (i, j) = unsafePerformIO
             $ readIORef ref
       b ← bernoulli
         (fromIntegral i / fromIntegral (i + j))
11
12
       if b then return
         $ unsafePerformIO
         $ writeIORef ref (i + 1, j)
         >> return True
       else return
         $ unsafePerformIO
         $ writeIORef ref (i, j + 1)
         >> return False
19
```

```
•••
```

```
1 newtype BetaBern = BetaBern Double
2
3 instance BinProcess (Int, Int) BetaBern where
4 new (i, j) = do
5 θ ← beta (fromIntegral i)
6 (fromIntegral j)
7 return $ BetaBern θ
8 get (BetaBern θ) = bernoulli θ
```

Random graphs: memoization for representation theorems

Aldous-Hoover (2-dimensional de Finetti) for exchangeable simple random graphs

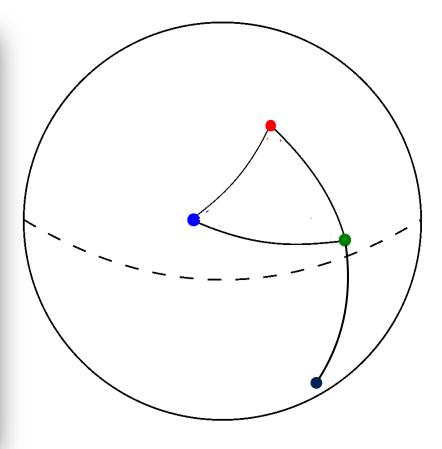
•••

- 1 class RandomGraph g where
- 2 type Graph g
- 3 data Vertex g
- 4 newGraph:: $g \rightarrow Prob$ (Graph g)
- 5 newVertex:: Graph $g \rightarrow Prob$ (Vertex g)
- 6 isEdge:: Graph $g \rightarrow Vertex g \rightarrow Vertex g \rightarrow Bool$

Random graphs: geometric graphs

•••

```
1 data GeomGraph = GeomGraph Int Double
2
3 instance RandomGraph GeomGraph where
4 type Graph GeomGraph = GeomGraph
5 data Vertex GeomGraph = GGV [Double]
6 newGraph g = return g
7 newVertex (GeomGraph dim _) =
8 GGV $ replicateM
9 dim uniform
10 isEdge (GeomGraph _ neighRadius) x y =
11 distance x y < neighRadius</pre>
```

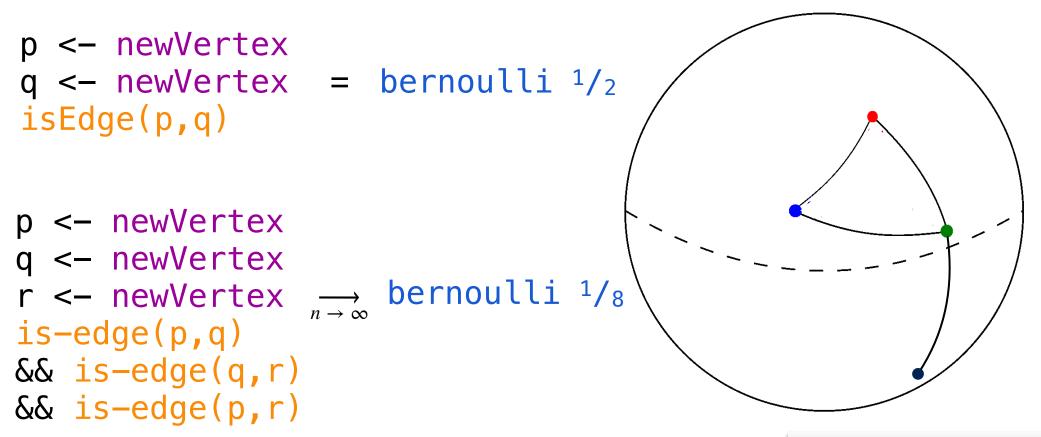


building on Bubeck, Ding, Eldan, Racz, 2015 Devroye, György, Lugosi, Udina, 2011

Random graphs: geometric graphs

 $newVertex = uniform S_n$

 $isEdge(p,q) = if d(p,q) < \pi/2$ then True else False



building on Bubeck, Ding, Eldan, Racz, 2015 Devroye, György, Lugosi, Udina, 2011

Random graphs: Rado/Erdős-Rényi graph

Limiting case, when $n \rightarrow \infty$ Can be implemented with memoize

•••

```
1 newtype Graphon = G ((Double, Double) → Double)
2
3 instance RandomGraph Graphon where
4 type Graph Graphon = (Double, Double) → Bool
5 data Vertex Graphon = V Double
6 newGraph (G graphon) = memoize $ bernoulli . graphon
7 newVertex _ = V <$ uniform
8 isEdge g (V x) (V y) = g (x, y)</pre>
```

Staton: if exchangeable, up to contextual equivalence, it is the *only* implementation

Bipartite random graph topos

```
1 -- Atoms (randomly generated fresh names)
2 new_atom :: A
3
4 -- Function labels:
5 -- type to be thought of as A \rightarrow Bool
6 new_function :: F
8 -- Application operator making every function memoized:
9 -- type of a bipartite graph
10 (a) :: (\mathbb{F}, \mathbb{A}) \rightarrow Bool
```

Analogously to the Rado topos setting:

denotational semantics where we look for a topos where a *random countable bigraph* plays the role of the Rado graph in the Rado topos.

Bipartite random graph topos

```
Atoms (randomly generated fresh names)
new_atom :: A
-- Function labels:
-- type to be thought of as A → Bool
new_function :: F
-- Application operator making every function memoized:
-- type of a bipartite graph
(a) :: (F, A) → Bool
```

Analogously to the Rado topos setting:

denotational semantics where we look for a topos where a *random countable bigraph* plays the role of the Rado graph in the Rado topos.

⇒ We work in the category of covariant (pre)sheaves on the category of finite bigraphs and embeddings

 $\llbracket \mathbb{F} \rrbracket = \mathbf{BiGrph}_{emb}(\circ, -) \qquad \llbracket \mathbb{A} \rrbracket = \mathbf{BiGrph}_{emb}(\bullet, -)$

Memo-nominal sets

Similarly to nominal sets (toposic Galois for empty theory):

mem-bernoulli p :: Prob (Atoms -> Bool)
fresh :: Prob Atoms

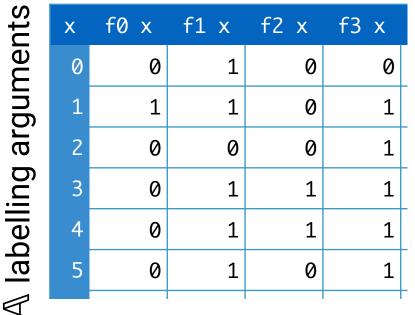
Two sorts of atoms: \mathbb{F} , \mathbb{A} .

Infinite memo table that embeds every finite memo table and allows extension (ultrahomogeneous)

Now reformulate nominal sets using automorphisms of this memo table.

e.g. Bojanczyk, Klin, Lasota, LMCS 2014

\mathbb{F} labelling functions



 $\mathbb{F} \times \mathbb{A} \to 2 \text{ memo table}$ $\mathbb{F} \subseteq [\mathbb{A} \to 2], \text{ currying}$

Theorem. MemoNom is a sheaf subcategory of [FinBiGrph, Set].

cf Caramello 2008, Caramello & Lafforgue, JGL 2019

Rado topos

Staton: Erdős-Rényi graphons $[0,1]^2 \rightarrow [0,1]$ correspond to *internal* probability measures $2^V \rightarrow \mathbb{R}_{\geq 0}$ for which the Fubini theorem holds.

$\operatorname{Sh}(\operatorname{FinGrph}_{emb}^{\operatorname{op}}, \operatorname{J}_{at}) \simeq \operatorname{Cont}(\operatorname{Aut}(R))$

Toposic Galois approach

Rado graph = Fraïssé limit of the amalgamation class of finite graphs and embeddings $\rightarrow \underline{Ultrahomogeneous\ structure}$ Fraïssé, 1950s.

For more general module interfaces:

1. Start with the signature of a countable first-order language L

2. Consider the category \mathbb{C} of finitely generated L-structures and embeddings.

3. If $\mathcal{C} \cong ob(\mathbb{C})$ is a suitable amalgamation class with Fraïssé limit M, when do we have

$$\operatorname{Sh}(\mathbb{C}^{\operatorname{op}}, \mathcal{J}_{at}) \simeq \operatorname{Cont}(\operatorname{Aut}(M))$$
?