
A model of
Stochastic Memoization

& Name Generation
in Probabilistic Programming

Younesse Kaddar, Sam Staton

University of Oxford

MFPS 2023

Summary

1. Deterministic vs stochastic memoization

2. Stochastic memoization: Clustering example

3. Stochastic memoization equations

4. Dataflow property

5. Minimal probabilistic language

6. Operational semantics

7. Denotational semantics

8. Soundness & Haskell implementation

Deterministic Memoization
Idea: store the result when a function is applied to
an argument, reuse it later when the same call is
made

Memo functions & machine learning

Donald Milchie, Nature 1968

Deterministic Memoization
Idea: store the result when a function is applied to
an argument, reuse it later when the same call is
made

x is_prime x

282589933 − 1 ???

9 ?

57 TRUE

2^(82589933) − 1 TRUE

Memo functions & machine learning

Donald Milchie, Nature 1968

Deterministic Memoization
Idea: store the result when a function is applied to
an argument, reuse it later when the same call is
made

x is_prime x

282589933 − 1 TRUE

9 ???

57 TRUE

2^(82589933) − 1 TRUE

Memo functions & machine learning

Donald Milchie, Nature 1968

Deterministic Memoization
Idea: store the result when a function is applied to
an argument, reuse it later when the same call is
made

x is_prime x

282589933 − 1 TRUE

9 FALSE

57 ???

2^(82589933) − 1 TRUE

Memo functions & machine learning

Donald Milchie, Nature 1968

Deterministic Memoization
Idea: store the result when a function is applied to
an argument, reuse it later when the same call is
made

x is_prime x

282589933 − 1 TRUE

9 FALSE

57 TRUE

282589933 − 1 ???

Memo functions & machine learning

Donald Milchie, Nature 1968

Deterministic Memoization
Idea: store the result when a function is applied to
an argument, reuse it later when the same call is
made

x is_prime x

282589933 − 1 TRUE

9 FALSE

57 TRUE

282589933 − 1 TRUE

Memo functions & machine learning

Donald Milchie, Nature 1968

Deterministic Memoization
Memo functions & machine learning

Donald Milchie, Nature 1968

Idea: store the result when a function is applied to
an argument, reuse it later when the same call is
made

x is_prime x

282589933 − 1 TRUE

9 FALSE

57 TRUE

282589933 − 1 TRUE

• Dynamic programming (variation on laziness)

• Over pure functions: “just” a speed-up (no semantic change)

⚠ Beware of recursion!

Stochastic Memoization

e.g.

Roy, Mansinghka, Goodman, Tenenbaum, NPB 2008

Wood, Archambeau, Gasthaus, James, Teh. ICML
2009.

With probability: changes the semantics!

Stochastic Memoization

e.g.

Roy, Mansinghka, Goodman, Tenenbaum, NPB 2008

Wood, Archambeau, Gasthaus, James, Teh. ICML
2009.

With probability: changes the semantics!

x f x

0.1 0.3364

9 ?

57 TRUE

2^(82589933) − 1 TRUE

🎲

https://lazyppl-team.github.io/

https://lazyppl-team.github.io/

Stochastic Memoization

e.g.

Roy, Mansinghka, Goodman, Tenenbaum, NPB 2008

Wood, Archambeau, Gasthaus, James, Teh. ICML
2009.

With probability: changes the semantics!

x f x

0.1 0.8364

0.3 0.5468

57 TRUE

2^(82589933) − 1 TRUE

🎲

https://lazyppl-team.github.io/

https://lazyppl-team.github.io/

Stochastic Memoization

e.g.

Roy, Mansinghka, Goodman, Tenenbaum, NPB 2008

Wood, Archambeau, Gasthaus, James, Teh. ICML
2009.

With probability: changes the semantics!

x f x

0.1 0.8364

0.3 0.5468

0.1 0.3484

2^(82589933) − 1 TRUE

🎲

https://lazyppl-team.github.io/

https://lazyppl-team.github.io/

Stochastic Memoization

e.g.

Roy, Mansinghka, Goodman, Tenenbaum, NPB 2008

Wood, Archambeau, Gasthaus, James, Teh. ICML
2009.

With probability: changes the semantics!

https://lazyppl-team.github.io/

https://lazyppl-team.github.io/

Stochastic Memoization

e.g.

Roy, Mansinghka, Goodman, Tenenbaum, NPB 2008

Wood, Archambeau, Gasthaus, James, Teh. ICML
2009.

With probability: changes the semantics!

x f x

0.1 0.8364

0.3 0.5468

0.1 0.8364

2^(82589933) − 1 TRUE

🎲❌

https://lazyppl-team.github.io/

https://lazyppl-team.github.io/

Stochastic Memoization

e.g.

Roy, Mansinghka, Goodman, Tenenbaum, NPB 2008

Wood, Archambeau, Gasthaus, James, Teh. ICML
2009.

With probability: changes the semantics!

white noise

Stochastic Memoization: Type
With probability: changes the semantics!

Stochastic Memoization: Example
Non-parametric clustering (Dirichlet Process)

• Objective: Cluster MFPS attendees based on their preferences for

different areas of mathematics and computer science.

• Dataset: Conference attendees and their preferences for various

areas of mathematics and computer science

• True for liking an area, False for disliking

• Goal: Identify distinct groups of attendees with similar

preferences.

Stochastic Memoization: Example
Non-parametric clustering (Dirichlet Process)

1. Randomly decide which proportion of individuals are in each cluster.

2. Assign a unique identifier to each cluster, from some space 𝔸 of identifiers. 

Dirichlet process with a diffuse base measure on 𝔸  

(eg. normal distribution on 𝔸 ≝ ℝ)

3. Assign attributes to the cluster identifiers.  

Attributes: Probability distribution over the fields (Algebra, Geometry, etc.) 

Assignment: sample from a random function in 𝔸 → Attributes, by

memoizing a Markov kernel.

4. Bayesian clustering: start with steps (1)-(3) as a reasonable prior, and

combine it with observed data to arrive at a posterior.

Stochastic Memoization: Example
Non-parametric clustering (Dirichlet Process)

1. Randomly decide which proportion of individuals are in each cluster.

2. Assign a unique identifier to each cluster, from some space 𝔸 of identifiers. 

Dirichlet process with a diffuse base measure on 𝔸  

(eg. normal distribution on 𝔸 ≝ ℝ)

3. Assign attributes to the cluster identifiers.  

Attributes: Probability distribution over the fields (Algebra, Geometry, etc.) 

Assignment: sample from a random function in 𝔸 → Attributes, by

memoizing a Markov kernel.

4. Bayesian clustering: start with steps (1)-(3) as a reasonable prior, and

combine it with observed data to arrive at a posterior.

Stochastic Memoization: Example

1. Randomly decide which proportion of individuals are in each cluster.

2. Assign a unique identifier to each cluster, from some space 𝔸 of identifiers. 

Dirichlet process with a diffuse base measure on 𝔸  

(eg. normal distribution on 𝔸 ≝ ℝ)

3. Assign attributes to the cluster identifiers.  

Attributes: Probability distribution over the fields (Algebra, Geometry, etc.) 

Assignment: sample from a random function in 𝔸 → Attributes, by

memoizing a Markov kernel.

4. Bayesian clustering: start with steps (1)-(3) as a reasonable prior, and

combine it with observed data to arrive at a posterior.

Non-parametric clustering (Dirichlet Process)

Stochastic Memoization: Example

1. Randomly decide which proportion of individuals are in each cluster.

2. Assign a unique identifier to each cluster, from some space 𝔸 of identifiers. 

Dirichlet process with a diffuse base measure on 𝔸  

(eg. normal distribution on 𝔸 ≝ ℝ)

3. Assign attributes to the cluster identifiers.  

Attributes: Probability distribution over the fields (Algebra, Geometry, etc.) 

Assignment: sample from a random function in 𝔸 → Attributes, by

memoizing a Markov kernel.

4. Bayesian clustering: start with steps (1)-(3) as a reasonable prior, and

combine it with observed data to arrive at a posterior.

Non-parametric clustering (Dirichlet Process)

Stochastic Memoization: Example

https://lazyppl-team.github.io/

https://lazyppl-team.github.io/

Stochastic Memoization: Example

Stochastic Memoization: Example
Going further: Latent Dirichlet Allocation (LDA)

courtesy: https://personal.utdallas.edu/~nrr150130/cs6347/2019sp/lects/Lecture_18_LDA.pdf

e.g. Blei et al. NeurIPS 2002.

https://chttps://personal.utdallas.edu/~nrr150130/cs6347/2019sp/lects/Lecture_18_LDA.pdfommons.wikimedia.org/wiki/File:Urn_problem_qtl5.svg

• infinite-dimensional structures in non-parametrics  

 (iid sequences, Gaussian process, CRP, IBP, etc)

• representation theorems  

 (de Finetti, Aldous-Hoover, etc)

• in practical probabilistic programming  

 (Church, WebPPL, Hansei, etc)

Stochastic Memoization

e.g.

Roy, Mansinghka, Goodman, Tenenbaum, NPB 2008

Wood, Archambeau, Gasthaus, James, Teh. ICML
2009.

With probability: changes the semantics!

Key for

• infinite-dimensional structures in non-parametrics  

 (iid sequences, Gaussian process, CRP, IBP, etc)

• representation theorems  

 (à la de Finetti, Aldous-Hoover, etc)

• in practical probabilistic programming  

 (Church, WebPPL, Hansei, etc)

Stochastic Memoization

e.g.

Roy, Mansinghka, Goodman, Tenenbaum, NPB 2008

Wood, Archambeau, Gasthaus, James, Teh. ICML
2009.

With probability: changes the semantics!

Key for

Stochastic Memoization

e.g.

Roy, Mansinghka, Goodman, Tenenbaum, NPB 2008

Wood, Archambeau, Gasthaus, James, Teh. ICML
2009.

With probability: changes the semantics!

Key for

• infinite-dimensional structures in non-parametrics  

 (iid sequences, Gaussian process, CRP, IBP, etc)

• representation theorems  

 (à la de Finetti, Aldous-Hoover, etc)

• in practical probabilistic programming  

 (Church, WebPPL, Hansei, BLOG, etc)

Stochastic Memoization
Finite Domain a

No problem!

https://lazyppl-team.github.io/

https://lazyppl-team.github.io/

Stochastic Memoization
Enumerable Domain a

Laziness trick

Example: Poisson Point Process  

Sample all the (exp distributed) interoccurrence times at once

https://lazyppl-team.github.io/

⟶ cf. Alex Simpson’s Talk

https://lazyppl-team.github.io/

Stochastic Memoization

Non-Enumerable Domain?

Open problem!

Stochastic Memoization
Non-Enumerable Domain?

Def:  
Let a be an object with an equality predicate (a,a)→bool

A diffuse distribution is a term p such that:

do {x ← p ; y ← p ; return (x == y)}

is semantically equal to

return False

NB: equations satisfied by a diffuse probability distribution = equations satisfied by name generation

Memoization equations
Notation: if is of the form , is writtenf memoize (f)

Memoization law
Def: A strong monad Prob is said to support  
stochastic memoization of type a→b  
if it is equipped with a morphism  
memoize :: (a → Prob b) → Prob (a → b)  
satisfying:

Memoization law

⛔ Problem:

The intuitive implementation uses state!

Memoization law

⛔ Problem:

The intuitive implementation uses state!

https://github.com/probmods/webppl/issues/896

Memoization law

⛔ Problem:

The intuitive implementation uses state!

BUT 
we want (non-negotiable):  

the dataflow property

Memoization law

⛔ Problem:

The intuitive implementation uses state!

BUT 
we want (non-negotiable):  

the dataflow property
❌

Dataflow property

The monad is commutative and affine.

 Program lines can be reordered and discarded if
dataflow is preserved.

The Kleisli category is a semi-cartesian monoidal category.

Kock, Synthetic Measure Theory, 2011

e.g. Cho, Jacobs MSCS 2019 
Fritz, Adv Math 2021 (Markov categories)

In probability: Fubini theorem and marginalisation/
normalisation of probability measures

⟺

⟺

⟺

⟶ cf. Paolo’s/Dario’s Talks

Dataflow property

BUT 

Memoization validates dataflow  

- Not intrinsically stateful

- rather: linked to pure probability theory

⛔ State violates the dataflow property  
(state monad not commutative)

Dataflow property

BUT 

Memoization validates dataflow  

- Not intrinsically stateful

- rather: linked to pure probability theory

⛔ State violates the dataflow property  
(state monad not commutative)

ℹ Kolmogorov’s extension theorem?

Kolmogorov extension

⛔ Problem: only give a measure on the product space, 
we want function spaces

In traditional probability theory:

ℝ × ℝ × ℝ × ℝ × …

ℝ ℝ × ℝ ℝ × ℝ × ℝ …
first  
projection

Kolmogorov extension: TFAE: 
a consistent family of finite dimensional probability distributions; 
an infinite dimensional probability distribution.

Heunen, Kammar, Staton, Yang. LICS 2017

⟶ Categorical probability: Quasi-Borel spaces (cartesian closed) 
Unfortunately: QBSes do not support memoization

Objective

Show that the following items are consistent:

• A probabilistic language with the dataflow property

• A type 𝔸 with a diffuse probability distribution

• A type bool with Bernoulli probability distributions

• A type of functions 𝔸 → bool with function application

• Stochastic memoization of constant Bernoulli functions

Challenge

Interface

 Language (fine-grained CBV)

Name generation, probabilistic effects, memoization

Operational Semantics

Memoization stack Δ and memoization contexts

x f0
x

f1
x

f2
x

f3
x

f4
x0 0 1 0 0 1

1 1 1 0 1 0

2 0 0 0 1 0

3 0 1 1 1 1

4 0 1 1 1 0

5 0 1 0 1 1

6 0 1 0 0 0

Operational semantics

Configurations (intuition):

⟨e, ⟩
expression memo table +  

closure for each column

Sound for our denotational semantics, but works 
more generally.

Operational Semantics

Enables us to define a small-step 
operational semantics

Operational Semantics

Operational Semantics
Example

Operational Semantics
Example

Operational Semantics
Proposition:

have indeed the same (big-step) operational semantics

Probabilistic local state monad
Theorem.

 

defines a commutative affine monad.

c.f. Plotkin Power FOSSACS 2002. 
Kaddar, Staton, MFPS 2023.

Gives a denotational semantics to our language

For all covariant presheaf X：BiGrphemb → Set  
and bipartite graph (bigraph) g

Probabilistic local state monad

Garbage collection of the coend:

Denotational semantics

• 𝔸 returns the label of an already existing atom  
or a fresh one with its connections to the already existing functions:

A computation of type:

• 𝔽 returns the label of an already existing function  
or creates a new function with its connections to already existing atoms  
and a fixed probabilistic bias:

Denotational semantics

Denotational semantics

Theorem. 
The probabilistic local state monad T supports stochastic memoization for

freshness-invariant functions (so, in particular, constant Bernoulli functions).

Soundness

Theorem. 
The denotational semantics is sound  

with respect to  
the operational semantics.

Haskell Toy Implementation

https://github.com/youqad/stochastic-memoization-implementation

https://github.com/youqad/stochastic-memoization-implementation

Conclusion

Show that the following items are consistent:

• A probabilistic language with the dataflow property ✅

• A type 𝔸 with a diffuse probability distribution ✅

• A type bool with Bernoulli probability distributions ✅

• A type of functions 𝔸 → bool with function application ✅

• Stochastic memoization of constant Bernoulli functions ✅

Challenge ✅

Summary

1. Deterministic vs stochastic memoization

2. Stochastic memoization: Clustering example

3. Stochastic memoization equations

4. Dataflow property

5. Minimal probabilistic language

6. Operational semantics

7. Denotational semantics

8. Soundness & Haskell implementation

Pólya’s Urn and de Finetti

courtesy: https://commons.wikimedia.org/wiki/File:Urn_problem_qtl5.svg

Staton, Stein, Yang, Ackermann,
Freer, Roy, ICALP 2018

https://commons.wikimedia.org/wiki/File:Urn_problem_qtl5.svg

Pólya’s Urn and de Finetti

=

Staton, Stein, Yang, Ackermann,
Freer, Roy, ICALP 2018

Random graphs: memoization for
representation theorems

Aldous-Hoover (2-dimensional de Finetti) 
for exchangeable simple random graphs

building on  
Bubeck, Ding, Eldan, Racz, 2015  
Devroye, György, Lugosi, Udina, 2011

Random graphs: geometric graphs

p <- newVertex

q <- newVertex

isEdge(p,q)

bernoulli 1/2

bernoulli 1/8⟶
n → ∞

newVertex = uniform Sn

isEdge(p,q) = if d(p,q) < π/2 then True else False

p <- newVertex

q <- newVertex

r <- newVertex

is-edge(p,q)

&& is-edge(q,r)

&& is-edge(p,r)

=

building on  
Bubeck, Ding, Eldan, Racz, 2015  
Devroye, György, Lugosi, Udina, 2011

Random graphs: geometric graphs

Random graphs: Rado/Erdős-Rényi graph
Limiting case, when n → ∞

Can be implemented with memoize

Staton: if exchangeable, up to contextual equivalence,  
it is the only implementation

Bipartite random graph topos

Analogously to the Rado topos setting:  
denotational semantics where we look for a topos where a random
countable bigraph plays the role of the Rado graph in the Rado topos.

Bipartite random graph topos

Analogously to the Rado topos setting:  
denotational semantics where we look for a topos where a random countable
bigraph plays the role of the Rado graph in the Rado topos.

⟹ We work in the category of covariant (pre)sheaves on the
category of finite bigraphs and embeddings

Memo-nominal sets
Similarly to nominal sets (toposic Galois for empty theory): Gabbay, Pitts. e.g. FACS 2002 

Pitts’ book, CUP 2013. 
Stark 1994

mem-bernoulli p :: Prob (Atoms -> Bool)
fresh :: Prob Atoms

x f0 x f1 x f2 x f3 x f4 x

0 0 1 0 0 1

1 1 1 0 1 0

2 0 0 0 1 0

3 0 1 1 1 0

4 0 1 1 1 0

5 0 1 0 1 1

6 0 0 1 1 0

Two sorts of atoms: , .𝔽 𝔸
 labelling functions𝔽

 la
be

lli
ng

 a
rg

um
en

ts
𝔸

 memo table𝔽 × 𝔸 → 2
, currying𝔽 ⊆ [𝔸 → 2]

Infinite memo table that embeds every
finite memo table and allows
extension (ultrahomogeneous)

Now reformulate nominal sets using
automorphisms of this memo table.

e.g. Bojanczyk, Klin, Lasota,
LMCS 2014

Theorem. is a sheaf subcategory of  
 .

MemoNom
[FinBiGrph, Set] cf Caramello 2008,  

Caramello & Lafforgue, JGL 2019

Rado topos
Staton: Erdős-Rényi graphons

correspond to internal probability measures  
 for which the Fubini theorem holds.

[0,1]2 → [0,1]

2V → ℝ≥0

Toposic Galois approach
Rado graph = Fraïssé limit of the amalgamation class of finite graphs
and embeddings ⟶ Ultrahomogeneous structure 
 

For more general module interfaces:  

1. Start with the signature of a countable first-order language L 
 
2. Consider the category ℂ of finitely generated L-structures and
embeddings.  
 
3. If 𝒞 ≝ ob(ℂ) is a suitable amalgamation class with Fraïssé limit M,
when do we have

Fraïssé, 1950s.

cf Caramello 2008,  
Caramello & Lafforgue, JGL 2019

