
Submitted to:

HOPE 2022

Higher order programming with probabilistic e�ects:
A model of stochastic memoization and name generation

Younesse Kaddar Sam Staton

Department of Computer Science, University of Oxford, UK

This abstract is about probabilistic programming, which is a method of programming statistical and machine learning

models. By combining higher-order functions, we can specify increasingly complex models. This abstract focuses on

stochastic memoization, a higher-order method that is simple and useful in practice, but semantically elusive, particularly

regarding data�ow transformations.

Deterministic versus stochastic memoization. Deterministic memoization, for a function f , is the process of

storing the result when f is applied to an argument, so that we can reuse it later when the same call is made [Mic68].

Since we only need to compute results once, this leads to a speed-up of the program, but it does not change its semantics.

However, in the presence of probabilistic e�ects, memoizing is no longer just an optimization technique. It does change

the semantics [Roy+08; Sta21; Woo+09], enabling us to de�ne in�nite random sequences, which are of paramount

importance in probability and statistics, as we now explain.

Typed stochastic memoization with monads. Suppose we have a monad for probabilistic e�ects, Prob. Stochas-
tic memoization is a higher-order function with probabilistic e�ects, of type mem :: (a → Prob b) → Prob (a → b).
For example, suppose we start with a function which randomly picks a number in [0, 1] every time it is called,

const (uniform 0 1) :: R→ Prob R. Then the memoized function randomly assigns a number to every input number,

mem (const (uniform 0 1)) :: Prob (R→ R). This is sometimes called white noise, and it is an important �rst exam-

ple; we give a more substantial example based on random graphs in Section 1. In practice, memoization is crucial in

Church [Goo+08] and WebPPL [GS14], and in this typed form in our Haskell library LazyPPL [Sta+]

Data �ow properties. Stochastic memoization is easy to implement using state. (When a is enumerable, in LazyPPL

we can also use laziness and tries, following [Hin00]; some languages also include state, e.g. [Kis]). Unlike a fully stateful

e�ect, however, stochastic memoization is still compatible with commutativity / data �ow program transformations:

x ← t ; y ← u = y ← u ; x ← t where x 6∈ freevars(u), y 6∈ freevars(t) (1)

These transformations are very useful in program optimization and inference algorithms. On the foundational side, data

�ow is a fundamental concept that corresponds to monoidal categories. The challenge is to validate these transformations.

Challenges for probability theory. On the semantic side, these transformations are not trivial. Informally, stochastic

memoization appears related to Kolmogorov’s extension theorem, which relates probability measures on in�nite product

spaces to probability measures on the projections from the product. Arguably, then, stochastic memoization validates

data�ow transformations because it is not intrinsically stateful, rather, it is linked to a fundamental part of pure probability

theory. However, traditional probability theory does not actually support higher-order functions [Aum61], and higher-

order probability is a burgeoning �eld [CJ19; Fri20; Heu+17; Koc11; Ste21]. Existing models of higher-order probability

do not support stochastic memoization, and this is the contribution of our work: a �rst model of stochastic memoization

with a non-enumerable type and validating the data�ow transformations (1).

1 Examples of programming with random graphs via stochastic memoization
Stochastic memoization is especially important for programming statistical models with random relational structures,

e.g. graph social networks, world wide web, biochemical pathways, etc. Consider, for example, a Haskell typeclass

RandomGraph corresponding to an abstract type whose interface allows us to generate a new random graph (with

2 2 SEMANTIC MODELS FOR STOCHASTIC MEMOIZATION

newGraph) from a seed g, draw vertices at random (with newVertex), and inspect the presence of edges between vertices

(with isEdge). Every measurable function g : [0, 1]2 → [0, 1] (called a graphon, e.g. [OR13]) can be used as a seed, leading

to the following implementation in our library LazyPPL [Sta+]:

class RandomGraph g where
type Graph g
data Vertex g
newGraph:: g → Prob (Graph g)
newVertex :: Graph g→ Prob (Vertex g)
isEdge :: Graph g→ Vertex g → Vertex g → Bool

newtype Graphon = G ((R, R) → R)

instance RandomGraph Graphon where
type Graph Graphon = (R, R) → Bool
data Vertex Graphon = V R
−− return a randomly sampled function ’(R , R) → Bool’
newGraph (G graphon) = mem $ bernoulli . graphon
newVertex _ = V <$> uniform
isEdge graph (V x) (V y) = graph (x , y)

assuming we have the second-order memoization function mem :: (a → Prob b) → Prob (a → b). The idea is that, once an

edge between x and y has been sampled (with probability graphon (x , y)), its presence (or absence) remains unchanged in

the rest of the program execution, hence the need to memoize the result. For example, newGraph (G (const 0.5)) generates

the Erdős-Rényi random graph [ER59].

Although we can de�ne some instances of RandomGraph without using mem, such as geometric random graphs, it turns

out that all instances are contextually equivalent to Graphon instances. Here the data �ow property (1) corresponds to the

statistical ‘exchangeability’ of vertices (e.g. [AFR16; Sta20; Sta+17]). Beyond exchangeable random graphs, memoization

is important for more complex / deep exchangeable random datatypes (e.g. [Jun+20; Sta+17]).

2 Semantic models for stochastic memoization
Stochastic functions are usually interpreted as probabilistic kernels f : X → PY , where P is a probability monad on a

suitable category [Fri20; Koc11]. A semantic model for stochastic memoization should then admit a cartesian closed

structure (to model higher-order functions) and a morphism memX,Y : (PY)X −→ P (Y X). For every f written as a

lambda-abstraction λx. u : X → PY , memX,Y (f) will be denoted by λמx. u, so that we require equations such as:

f ← λמx. u
f n

one sample

= u[n/x]

f ← λמx. u
v1 ← f n
w← f m
v2 ← f n
return (v1 , w, v2)

several samples

=

v ← u[n/x]
w← u[m/x]
return (v , w, v)

(2)

To prove that equations (2) are consistent with the data�ow property (1), we give a denotational model. For simplicity,

we focus on Boolean-valued functions over a non-enumerable type of atoms [Pit13]. Our model is based on functors

over �nite bipartite graphs (bigraphs, for short), see [KS22] for details. At a lower level, we have the following interface:

new_atom :: A −− Atoms (randomly generated fresh names)
new_function :: F −− Function labels : type to be thought of as A → Bool
(@) :: (F , A) → Bool −− Application operator making every function memoized: type of a bipartite graph

where every function from a set of atoms A to Bool is viewed as an inhabitant of type F (thought of as A → Bool).
Applying a function to an argument and memoizing the result amounts to the explicit ‘apply’ operator (@) :: F×A→ Bool.
But requiring that the results be memoized is precisely saying that @ ought to be seen as the ‘edge’ relation of a bigraph

with set F of left nodes and A of right nodes, the edges of which are such that their presence (or absence) remains

unchanged after being sampled, like isEdge in RandomGraph. Inspired by the local state monad [PP02] (which was de�ned

on the functor category [Inj,Set], where Inj is the category of �nite sets and injections), we model probabilistic and

name generation e�ects by a new monad T on [BiGrphemb,Set], where BiGrphemb is the category of �nite bigraphs and

embeddings. We then use it to give a categorical semantics to our language, and we show that:

Theorem 2.1. The monad T validates (2). Moreover, it is strong commutative and a�ne (i.e. an abstract model of
probability [Koc11]) and therefore satis�es the data�ow property (1).

3

References

[AFR16] Nathanael L Ackerman, Cameron E Freer and Daniel M Roy. “EXCHANGEABLE RANDOM PRIMITIVES”.

In: PPS 2016. St. Petersburg, Florida, United States, 2016, page 4.

[Aum61] Robert J. Aumann. “Borel Structures for Function Spaces”. In: Illinois Journal of Mathematics 5.4 (Dec. 1,

1961), pages 614–630. doi: 10.1215/ijm/1255631584. url: https://doi.org/10.1215/
ijm/1255631584.

[CJ19] Kenta Cho and Bart Jacobs. “Disintegration and Bayesian Inversion via String Diagrams”. In: Mathematical
Structures in Computer Science 29.7 (Aug. 2019), pages 938–971. issn: 0960-1295, 1469-8072. doi: 10.1017/
s0960129518000488. arXiv: 1709.00322. url: http://arxiv.org/abs/1709.00322
(visited on 01/25/2021).

[ER59] P. Erdös and A. Rényi. “On Random Graphs I”. In: Publicationes Mathematicae Debrecen 6 (1959), page 290.

[Fri20] Tobias Fritz. “A Synthetic Approach to Markov Kernels, Conditional Independence and Theorems on

Su�cient Statistics”. In: Advances in Mathematics 370 (Aug. 2020), page 107239. issn: 00018708. doi: 10.
1016/j.aim.2020.107239. arXiv: 1908.07021. url: http://arxiv.org/abs/1908.
07021 (visited on 01/31/2021).

[GS14] Noah D Goodman and Andreas Stuhlmüller. The Design and Implementation of Probabilistic Programming
Languages. 2014. url: http://dippl.org/ (visited on 08/17/2021).

[Goo+08] Noah D. Goodman, Vikash K. Mansinghka, Daniel Roy, Keith Bonawitz and Joshua B. Tenenbaum. “Church:

A Language for Generative Models”. In: Proceedings of the Twenty-Fourth Conference on Uncertainty in
Arti�cial Intelligence. UAI’08. Arlington, Virginia, USA: AUAI Press, July 9, 2008, pages 220–229. isbn:

978-0-9749039-4-1.

[Heu+17] Chris Heunen, Ohad Kammar, Sam Staton and Hongseok Yang. “A Convenient Category for Higher-Order

Probability Theory”. In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) (June

2017), pages 1–12. doi: 10.1109/lics.2017.8005137. arXiv: 1701.02547. url: http:
//arxiv.org/abs/1701.02547 (visited on 12/11/2020).

[Hin00] Ralf Hinze. “Generalizing Generalized Tries”. In: Journal of Functional Programming 10 (July 2000), pages 327–

351. doi: 10.1017/S0956796800003713.

[Jun+20] Paul Jung, Jiho Lee, Sam Staton and Hongseok Yang. “A Generalization of Hierarchical Exchangeability

on Trees to Directed Acyclic Graphs”. In: Annales Henri Lebesgue 4 (July 24, 2020), pages 325–368. doi:

10.5802/ahl.74. arXiv: 1812.06282. url: http://arxiv.org/abs/1812.06282
(visited on 11/13/2020).

[KS22] Younesse Kaddar and Sam Staton. “A Model of Stochastic Memoization and Name Generation”. University

of Oxford, 2022. url: https://younesse.net/assets/stochmem.pdf.

[Kis] Oleg Kiselyov. Logic Programming in HANSEI. url: https://okmij.org/ftp/kakuritu/
logic-programming.html (visited on 06/09/2022).

[Koc11] Anders Kock. “Commutative Monads as a Theory of Distributions”. In: Theory and Applications of Categories
26 (Aug. 30, 2011). arXiv: 1108.5952. url: http://arxiv.org/abs/1108.5952 (visited on

02/07/2021).

[Mic68] Donald Michie. ““Memo” Functions and Machine Learning”. In: Nature 218.5138 (5138 Apr. 1968), pages 306–

306. issn: 1476-4687. doi: 10.1038/218306c0. url: https://www.nature.com/articles/
218306c0 (visited on 06/09/2022).

[OR13] Peter Orbanz and Daniel M. Roy. “Bayesian Models of Graphs, Arrays and Other Exchangeable Random

Structures”. In: IEEE Transactions on Pattern Analysis andMachine Intelligence 37 (Dec. 2013). doi:10.1109/
TPAMI.2014.2334607. arXiv: 1312.7857. url: http://arxiv.org/abs/1312.7857
(visited on 12/03/2021).

https://doi.org/10.1215/ijm/1255631584
https://doi.org/10.1215/ijm/1255631584
https://doi.org/10.1215/ijm/1255631584
https://doi.org/10.1017/s0960129518000488
https://doi.org/10.1017/s0960129518000488
https://arxiv.org/abs/1709.00322
http://arxiv.org/abs/1709.00322
https://doi.org/10.1016/j.aim.2020.107239
https://doi.org/10.1016/j.aim.2020.107239
https://arxiv.org/abs/1908.07021
http://arxiv.org/abs/1908.07021
http://arxiv.org/abs/1908.07021
http://dippl.org/
https://doi.org/10.1109/lics.2017.8005137
https://arxiv.org/abs/1701.02547
http://arxiv.org/abs/1701.02547
http://arxiv.org/abs/1701.02547
https://doi.org/10.1017/S0956796800003713
https://doi.org/10.5802/ahl.74
https://arxiv.org/abs/1812.06282
http://arxiv.org/abs/1812.06282
https://younesse.net/assets/stochmem.pdf
https://okmij.org/ftp/kakuritu/logic-programming.html
https://okmij.org/ftp/kakuritu/logic-programming.html
https://arxiv.org/abs/1108.5952
http://arxiv.org/abs/1108.5952
https://doi.org/10.1038/218306c0
https://www.nature.com/articles/218306c0
https://www.nature.com/articles/218306c0
https://doi.org/10.1109/TPAMI.2014.2334607
https://doi.org/10.1109/TPAMI.2014.2334607
https://arxiv.org/abs/1312.7857
http://arxiv.org/abs/1312.7857

4 2 SEMANTIC MODELS FOR STOCHASTIC MEMOIZATION

[Pit13] A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge Tracts in Theoretical

Computer Science 57. Cambridge ; New York: Cambridge University Press, 2013. 276 pages. isbn: 978-1-107-

01778-8.

[PP02] Gordon Plotkin and John Power. “Notions of Computation Determine Monads”. In: Foundations of Software
Science and Computation Structures. Edited by Mogens Nielsen and U�e Engberg. Redacted by Gerhard

Goos, Juris Hartmanis and Jan van Leeuwen. Volume 2303. Lecture Notes in Computer Science. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2002, pages 342–356. isbn: 978-3-540-43366-8 978-3-540-45931-6.

doi: 10.1007/3-540-45931-6_24. url: http://link.springer.com/10.1007/3-
540-45931-6_24 (visited on 05/24/2021).

[Roy+08] D. Roy, Vikash K. Mansinghka, Noah D. Goodman and J. Tenenbaum. “A Stochastic Programming Per-

spective on Nonparametric Bayes”. In: 2008. url: https://www.semanticscholar.org/
paper/A-stochastic-programming-perspective-on-Bayes-Roy-Mansinghka/
946ed04f705a2a28539a8af1f5e9ccdedd7fabc2 (visited on 01/21/2022).

[Sta20] Sam Staton. “Categorical Models of Probability with Symmetries”. Categorical Probability and Statistics.

June 2020. url: http://perimeterinstitute.ca/personal/tfritz/2019/cps_
workshop/slides/staton.pdf.

[Sta21] Sam Staton. “Some Formal Structures in Probability”. 2021. url: http://www.cs.ox.ac.uk/
people/samuel.staton/2021fscd.pdf.

[Sta+] Sam Staton, Hugo Paquet, Swaraj Dash and Younesse Kaddar. LazyPPL. url: https://lazyppl.
bitbucket.io/ (visited on 04/04/2022).

[Sta+17] Sam Staton, Hongseok Yang, Nathanael Ackerman, Cameron Freer and Daniel M Roy. “Exchangeable

Random Processes and Data Abstraction”. In: PPS Workshop. Paris, France, 2017, page 4. url: http:
//www.cs.ox.ac.uk/people/hongseok.yang/paper/pps17a.pdf.

[Ste21] Dario Maximilian Stein. “Structural Foundations for Probabilistic Programming Languages”. University of

Oxford, 2021. 221 pages.

[Woo+09] Frank Wood, Cédric Archambeau, Jan Gasthaus, Lancelot James and Yee Whye Teh. “A Stochastic Memoizer

for Sequence Data”. In: Proceedings of the 26th Annual International Conference on Machine Learning - ICML
’09. The 26th Annual International Conference. Montreal, Quebec, Canada: ACM Press, 2009, pages 1–8.

isbn: 978-1-60558-516-1. doi: 10/fg8z4q. url: http://portal.acm.org/citation.cfm?
doid=1553374.1553518 (visited on 01/21/2022).

https://doi.org/10.1007/3-540-45931-6_24
http://link.springer.com/10.1007/3-540-45931-6_24
http://link.springer.com/10.1007/3-540-45931-6_24
https://www.semanticscholar.org/paper/A-stochastic-programming-perspective-on-Bayes-Roy-Mansinghka/946ed04f705a2a28539a8af1f5e9ccdedd7fabc2
https://www.semanticscholar.org/paper/A-stochastic-programming-perspective-on-Bayes-Roy-Mansinghka/946ed04f705a2a28539a8af1f5e9ccdedd7fabc2
https://www.semanticscholar.org/paper/A-stochastic-programming-perspective-on-Bayes-Roy-Mansinghka/946ed04f705a2a28539a8af1f5e9ccdedd7fabc2
http://perimeterinstitute.ca/personal/tfritz/2019/cps_workshop/slides/staton.pdf
http://perimeterinstitute.ca/personal/tfritz/2019/cps_workshop/slides/staton.pdf
http://www.cs.ox.ac.uk/people/samuel.staton/2021fscd.pdf
http://www.cs.ox.ac.uk/people/samuel.staton/2021fscd.pdf
https://lazyppl.bitbucket.io/
https://lazyppl.bitbucket.io/
http://www.cs.ox.ac.uk/people/hongseok.yang/paper/pps17a.pdf
http://www.cs.ox.ac.uk/people/hongseok.yang/paper/pps17a.pdf
https://doi.org/10/fg8z4q
http://portal.acm.org/citation.cfm?doid=1553374.1553518
http://portal.acm.org/citation.cfm?doid=1553374.1553518

	Examples of programming with random graphs via stochastic memoization
	Semantic models for stochastic memoization

