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This abstract is about probabilistic programming, which is a method of programming statistical and machine learning

models. By combining higher-order functions, we can specify increasingly complex models. This abstract focuses on

stochastic memoization, a higher-order method that is simple and useful in practice, but semantically elusive, particularly

regarding data�ow transformations.

Deterministic versus stochastic memoization. Deterministic memoization, for a function f , is the process of

storing the result when f is applied to an argument, so that we can reuse it later when the same call is made [Mic68].

Since we only need to compute results once, this leads to a speed-up of the program, but it does not change its semantics.

However, in the presence of probabilistic e�ects, memoizing is no longer just an optimization technique. It does change

the semantics [Roy+08; Sta21; Woo+09], enabling us to de�ne in�nite random sequences, which are of paramount

importance in probability and statistics, as we now explain.

Typed stochastic memoization with monads. Suppose we have a monad for probabilistic e�ects, Prob. Stochas-
tic memoization is a higher-order function with probabilistic e�ects, of type mem :: (a → Prob b) → Prob (a → b).
For example, suppose we start with a function which randomly picks a number in [0, 1] every time it is called,

const (uniform 0 1) :: R→ Prob R. Then the memoized function randomly assigns a number to every input number,

mem (const (uniform 0 1)) :: Prob (R→ R). This is sometimes called white noise, and it is an important �rst exam-

ple; we give a more substantial example based on random graphs in Section 1. In practice, memoization is crucial in

Church [Goo+08] and WebPPL [GS14], and in this typed form in our Haskell library LazyPPL [Sta+]

Data �ow properties. Stochastic memoization is easy to implement using state. (When a is enumerable, in LazyPPL

we can also use laziness and tries, following [Hin00]; some languages also include state, e.g. [Kis]). Unlike a fully stateful

e�ect, however, stochastic memoization is still compatible with commutativity / data �ow program transformations:

x ← t ; y ← u = y ← u ; x ← t where x 6∈ freevars(u), y 6∈ freevars(t) (1)

These transformations are very useful in program optimization and inference algorithms. On the foundational side, data

�ow is a fundamental concept that corresponds to monoidal categories. The challenge is to validate these transformations.

Challenges for probability theory. On the semantic side, these transformations are not trivial. Informally, stochastic

memoization appears related to Kolmogorov’s extension theorem, which relates probability measures on in�nite product

spaces to probability measures on the projections from the product. Arguably, then, stochastic memoization validates

data�ow transformations because it is not intrinsically stateful, rather, it is linked to a fundamental part of pure probability

theory. However, traditional probability theory does not actually support higher-order functions [Aum61], and higher-

order probability is a burgeoning �eld [CJ19; Fri20; Heu+17; Koc11; Ste21]. Existing models of higher-order probability

do not support stochastic memoization, and this is the contribution of our work: a �rst model of stochastic memoization

with a non-enumerable type and validating the data�ow transformations (1).

1 Examples of programming with random graphs via stochastic memoization
Stochastic memoization is especially important for programming statistical models with random relational structures,

e.g. graph social networks, world wide web, biochemical pathways, etc. Consider, for example, a Haskell typeclass

RandomGraph corresponding to an abstract type whose interface allows us to generate a new random graph (with
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newGraph) from a seed g, draw vertices at random (with newVertex), and inspect the presence of edges between vertices

(with isEdge). Every measurable function g : [0, 1]2 → [0, 1] (called a graphon, e.g. [OR13]) can be used as a seed, leading

to the following implementation in our library LazyPPL [Sta+]:

class RandomGraph g where
type Graph g
data Vertex g
newGraph:: g → Prob (Graph g)
newVertex :: Graph g→ Prob (Vertex g)
isEdge :: Graph g→ Vertex g → Vertex g → Bool

newtype Graphon = G ((R, R) → R)

instance RandomGraph Graphon where
type Graph Graphon = (R, R) → Bool
data Vertex Graphon = V R
−− return a randomly sampled function ’(R , R) → Bool’
newGraph (G graphon) = mem $ bernoulli . graphon
newVertex _ = V <$> uniform
isEdge graph (V x) (V y) = graph (x , y)

assuming we have the second-order memoization function mem :: (a → Prob b) → Prob (a → b). The idea is that, once an

edge between x and y has been sampled (with probability graphon (x , y)), its presence (or absence) remains unchanged in

the rest of the program execution, hence the need to memoize the result. For example, newGraph (G (const 0.5)) generates

the Erdős-Rényi random graph [ER59].

Although we can de�ne some instances of RandomGraph without using mem, such as geometric random graphs, it turns

out that all instances are contextually equivalent to Graphon instances. Here the data �ow property (1) corresponds to the

statistical ‘exchangeability’ of vertices (e.g. [AFR16; Sta20; Sta+17]). Beyond exchangeable random graphs, memoization

is important for more complex / deep exchangeable random datatypes (e.g. [Jun+20; Sta+17]).

2 Semantic models for stochastic memoization
Stochastic functions are usually interpreted as probabilistic kernels f : X → PY , where P is a probability monad on a

suitable category [Fri20; Koc11]. A semantic model for stochastic memoization should then admit a cartesian closed

structure (to model higher-order functions) and a morphism memX,Y : (PY )X −→ P (Y X). For every f written as a

lambda-abstraction λx. u : X → PY , memX,Y (f) will be denoted by λמx. u, so that we require equations such as:

f ← λמx. u
f n

one sample

= u[n/x]

f ← λמx. u
v1 ← f n
w← f m
v2 ← f n
return (v1 , w, v2 )

several samples

=

v ← u[n/x]
w← u[m/x]
return (v , w, v)

(2)

To prove that equations (2) are consistent with the data�ow property (1), we give a denotational model. For simplicity,

we focus on Boolean-valued functions over a non-enumerable type of atoms [Pit13]. Our model is based on functors

over �nite bipartite graphs (bigraphs, for short), see [KS22] for details. At a lower level, we have the following interface:

new_atom :: A −− Atoms (randomly generated fresh names)
new_function :: F −− Function labels : type to be thought of as A → Bool
(@) :: (F , A) → Bool −− Application operator making every function memoized: type of a bipartite graph

where every function from a set of atoms A to Bool is viewed as an inhabitant of type F (thought of as A → Bool).
Applying a function to an argument and memoizing the result amounts to the explicit ‘apply’ operator (@) :: F×A→ Bool.
But requiring that the results be memoized is precisely saying that @ ought to be seen as the ‘edge’ relation of a bigraph

with set F of left nodes and A of right nodes, the edges of which are such that their presence (or absence) remains

unchanged after being sampled, like isEdge in RandomGraph. Inspired by the local state monad [PP02] (which was de�ned

on the functor category [Inj,Set], where Inj is the category of �nite sets and injections), we model probabilistic and

name generation e�ects by a new monad T on [BiGrphemb,Set], where BiGrphemb is the category of �nite bigraphs and

embeddings. We then use it to give a categorical semantics to our language, and we show that:

Theorem 2.1. The monad T validates (2). Moreover, it is strong commutative and a�ne (i.e. an abstract model of
probability [Koc11]) and therefore satis�es the data�ow property (1).
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