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This abstract is about probabilistic programming, which is a method of programming statistical models and machine

learning models. By combining higher-order functions, we can specify increasingly complex models. This abstract

focuses on stochastic memoization, a higher-order method that is simple and useful in practice, but semantically elusive,

particularly regarding data�ow transformations.

Deterministic versus stochastic memoization. Deterministic memoization, for a function f , is the process of

storing the result when f is applied to an argument, so that we can reuse it later when the same call is made [Mic68].

Since we only need to compute results once, this leads to a speed-up of the program, but it does not change its semantics.

However, in the presence of probabilistic e�ects, memoizing is no longer just an optimization technique. It does change

the semantics [Roy+08; Sta21; Woo+09], enabling us to de�ne in�nite random sequences, which are of paramount

importance in probability and statistics.

Typed stochastic memoization with monads. Suppose we have a monad for probabilistic e�ects, Prob. Stochas-
tic memoization is a higher-order function with probabilistic e�ects, of type mem :: (a → Prob b) → Prob (a → b).
For example, suppose we start with a function which randomly picks a number in [0, 1] every time it is called,

const (uniform 0 1) :: R→ Prob R. Then the memoized function randomly assigns a number to every input num-

ber, mem (const (uniform 0 1)) :: Prob (R→ R). This is sometimes called white noise. White noise is an important �rst

example; we give a more substantial motivating example based on random graphs in Section 1. In practice, memoization

is crucial in Church [GS14] and WebPPL [GS14], and in this typed form with monads in our library LazyPPL [Sta+].

Data �ow properties. Stochastic memoization is easy to implement using state. (When a is enumerable, in LazyPPL

we can also use laziness and tries, following [Hin].). Unlike a fully stateful language, however, stochastic memoization is

still compatible with commutativity / data �ow program transformations:

x ← t ; y ← u = y ← u ; x ← t where x 6∈ freevars(u), y 6∈ freevars(t)

These transformations are very useful in program optimization and inference algorithms. On the foundational side,

data �ow is a fundamental concept that corresponds to monoidal categories. The challenge addressed in this work is to

validate these transformations.

Challenges for probability theory. On the semantic side, these transformations are not trivial. Informally, stochastic

memoization appears related to Kolmogorov’s extension theorem, which relates probability measures on in�nite product

spaces to probability measures on the projections from the product. Arguably, then, stochastic memoization validates

data�ow transformations because it is not intrinsically stateful, rather, it is linked to a fundamental part of pure probability

theory. However, traditional probability theory does not actually support higher-order functions [Aum61], and higher-

order probability is a burgeoning �eld [CJ19; Fri20; Heu+17; Koc11; Ste21]. Existing models of higher-order probability

do not support stochastic memoization, and this is the contribution of our work: a �rst model of stochastic memoization

with a non-enumerable type and validating the data�ow transformations.

1 Stochastic Memoization

Stochastic memoization is, on the practical side, a convenient way to implement in�nite sequences of random variables,

point processes, clustering and, more generally, nonparametric Bayesian models in probabilistic programming [Roy+08;
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Woo+09]. On the theoretical side, stochastic memoization may become of utmost importance to obtain general represen-

tation theorems for exchangeable data types, similar to de Finetti’s theorem [Fin37] (for exchangeable sequences) or the

Aldous-Hoover theorem [Ald81; Hoo79] (for exchangeable arrays). Consider the following example.

Exchangeable random graphs. Random arrays (Xi,j)i,j of Boolean random variables (where i and j range over

countable collections of potentially related objects) are a useful data analysis tool to model relational data, which

are observations of binary relationships between collections of objects, e.g. graph social networks, world wide web,

biochemical pathways, etc. When we have a single (countable) collection of objects that we wish to compare pairwise

(i.e. i and j range over the same countable index), the array (Xi,j)i,j can be seen as the adjacency matrix a random graph.

Such random adjacency matrices (Xi,j)i,j are said to be exchangeable when their joint distribution is invariant under

relabeling the nodes of the corresponding graph. If the random graph is assumed to be simple (i.e. (Xi,j)i,j is symmetric

and has zero diagonal), the celebrated Aldous-Hoover theorem states that every corresponding exchangeable adjacency

matrix can be parametrized by a (random) measurable function G : [0, 1]2 → [0, 1] called a graphon. If ui, uj are iid

random variables corresponding to two nodes i, j in the random simple graph, G(ui, uj) gives the probability that there

is an edge between i and j. As a result, Bayesian models modeling exchangeable simple graphs are entirely determined

(in distribution) by a prior on the space of graphons.

Consider a typeclass RandomGraph, corresponding to an abstract data type whose interface allows us to draw vertices

at random (with newVertex) from a random graph with a countable set V = v of vertices, and inspect the presence of

edges between vertices (with isEdge). In the spirit of the Aldous-Hoover representation theorem, for every graphon

G = graphon : [0, 1]2 → [0, 1], we can write an implementation for this interface in our library LazyPPL [Sta+]:

class RandomGraph v where
type Graph v
newVertex :: Prob v
newGraph:: Prob (Graph v)
isEdge :: Graph v→ (v , v) → Bool

class Graphon where
graphon :: (R , R) → R

instance Graphon => RandomGraph R where
type Graph Double = (R, R) → Bool
newVertex = uniform

−− return a randomly sampled function ’(R , R) → Bool’
newGraph = mem $ bernoulli . graphon

isEdge g (x , y) = g (x , y)

assuming we have a memoization function mem :: (a → Prob b) → Prob (a → b). The idea is that, once an edge between

x and y has been sampled (with probability graphon (x , y)), its presence (or absence) remains unchanged in the rest of

the program, hence the need to memoize the result. Staton showed that such graphon-based implementations are the

only ones up to contextual equivalence, provided that they satisfy the data�ow property:

Theorem 1.1 (Staton’s Aldous-Hoover representation [Sta20]). An implementation for the interface RandomGraph satis�es
the data�ow property ( i.e. program lines can be reordered (commutativity) and discarded (a�neness) as long as the data�ow
is preserved) i� it is observationally equivalent to a graphon implementation.

The proof involves building a categorical model based on the Rado graph (the countable graph that embeds every at most

countable graph), paving the way for a very general approach to tackle similar representation problems.

2 Semantics

Stochastic functions are interpreted as probabilistic kernels f : X → PY , where P is a probability monad, in a

suitable cartesian closed category (to model higher-order functions), e.g. the category of quasi-Borel spaces ([Heu+17]).

Stochastic memoization (simply referred to as ‘memoization’ henceforth) is then internally expressed as a morphism

memX,Y : (PY )X −→ P (Y X) converting a probabilistic kernel (which associates, for every given input in X , a random

output in Y ) into a random function X → Y (randomly choosing all the outputs for all the possible inputs at once). If f
is written as a lambda-abstraction λx. u : X → PY , memX,Y (f) will be denoted by λמx. u.
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f ← λמx. u
f n

one sample

= u[n/x]

f ← λמx. u
v1 ← f n
w← f m
v2 ← f n
return (v1 , w, v2 )

several samples

=

v ← u[n/x]
w← u[m/x]
return (v , w, v)

For �nite typesX , memoization is a matter of simply sampling a value of f(x) for all inhabitants of x ∈ X , and returning

the assignment as a �nite mapping. For countable types, we can sometimes successfully take advantage of the host

language’s laziness to circumvent the issue of manipulating potentially in�nite structures (this is done in LazyPPL).

But what about uncountable types X? (We cannot just range over an uncountable space for all x ∈ X anymore.)

The category of quasi-Borel spaces is unfortunately known not to support memoization in general [Sta21]. The �rst

implementation of ‘memoize’ that comes to mind uses state to store previously seen values. But usually, using memory

compromises the data�ow property (the state monad is not commutative). However, we conjecture that ‘memoize’ is a

special kind of stateful operation that do preserve the data�ow property:

Proposition 2.1. Stochastic memoization still admits the data�ow property (even if one resorts to hidden state).

To give a semantics to stochastic memoization for Boolean-valued functions (to start small), the idea is that we may wish

to have the following interface:

new_atom :: A −− Atoms (randomly generated fresh names)
new_function :: F −− Function labels : type to be thought of as A → Bool
(@) :: (F , A) → Bool −− Application operator making every function memoized: type of a bipartite graph

where every function from a set of atoms A (each one of which can be randomly generated) to Bool would be defunc-

tionalized and viewed as an inhabitant of a type F (which would then be thought of as A→ Bool). Applying a function

to an argument and memoizing the result would then be made possible by an ‘apply’ operator (@) :: F × A → Bool.
But requiring that the results be memoized is precisely saying that (@) :: F× A→ Bool ought to be seen as the ‘edge’

relation of a bipartite graph (bigraph, for short) with set F of left nodes and A of right nodes – whose edges are such that

their presence (or absence) remain unchanged after being sampled, exactly like isEdge in RandomGraph. Analogously to

the Rado topos setting, this suggests, on the denotational semantics side, that we are looking for a topos where a random

countable bigraph would play the role of the Rado graph in the Rado topos.

3 Toy language for stochastic memoization and name generation

One way to prove proposition 2.1 is to exhibit a denotational model, which we attempt in this section, in a restricted

setting. We consider a small simply typed language to shed light on three features that we model semantically:

• name generation: we can generate fresh names – referred to as atomic names or atoms, in the sense of Pitt’s

nominal set theory [Pit13] – with constructs such as let x = fresh() in · · · .
• basic probabilistic e�ects: for illustrative purposes, the only distribution we consider, as a �rst step, is the

Bernoulli distribution with bias p = 1/2. Constructs like let b = flip() in · · · amount to �ipping a fair coin and

storing its result in a variable b.

• stochastic memoization: if a stochastic function f – memoized with the new λמ operator – is called twice on

the same argument, it should return the same result.

We have the following base types: bool (booleans), A (atomic names), and F (intended for memoized functions A→ bool).
For the sake of simplicity, we do not have arbitrary function types.

A,B ::= bool | A | F | A×B

In �ne-grained call-by-value fashion [Lev06], there are two kinds of judgments: typed values, and typed computations.
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Values:
−

Γ, x : A v̀ x : A

Γ v̀ v : A Γ v̀ w : B

Γ v̀ (v, w) : A×B
−

Γ v̀ true : bool

−
Γ v̀ false : bool

Computations:
Γ v̀ v : A

Γ c̀ return(v) : A

Γ c̀ u : A Γ, x : A c̀ t : B

Γ c̀ let val x ← u in t : B

Matching:
Γ v̀ v : bool Γ c̀ u : A Γ c̀ t : A

Γ c̀ if v thenu else t : A

Γ v̀ v : A×B Γ, x : A, y : B c̀ t : C

Γ c̀ match v as (x, y) in t : C

Language-speci�c commands:

−
Γ c̀ flip() : bool

−
Γ c̀ fresh() : A

Γ v̀ v : A Γ v̀ w : A
Γ c̀ (v = w) : bool

Γ v̀ v : F Γ v̀ w : A
Γ c̀ (v@w) : bool

Γ, x : A c̀ u : bool

Γ c̀ λמx. u : F

We work in the (cartesian closed) category of covariant presheaves on the category BiGrphemb of �nite bipartite graphs

(henceforth called bigraphs) and embeddings (that do not add or remove edges). For a bigraph g, we denote by gL (resp.

gR) and Eg its set of left (resp. right) nodes and its edge relation.

The denotation of basic types is given by:

JFK = BiGrphemb(◦,−) JAK = BiGrphemb(•,−)

where ◦ and • are the one-vertex left and right graphs respectively. The denotation of the type of booleans is the constant

presheaf 2 ∼= 1 + 1, as usual. For a bigraph g and a presheaf X = JX K, X(g) is thought of as the set of generative

models/programs of type X that may use the bigraph g, in the following sense: probabilistic function (that we want

to memoize) and atom labels are stored as left and right nodes respectively. The presence (resp. absence) of an edge

between a given left and right node memoizes the fact that a probabilistic call of the corresponding function on the

corresponding atom has resulted in true (resp. false). For every embedding ι : g ↪→ g′, the function Xι : X(g)→ X(g′)
models substitution in the programs in X(g) according to ι.

4 Probabilistic local state monad

Inspired from Plotkin and Power’s local state monad [PP02] (which was de�ned on the covariant presheaf category

[Inj, Set], where Inj is the category of �nite sets and injections), we model probabilistic and name generation e�ects

by a new monad that we name ‘probabilistic local state monad’. In the following, X,Y, Z : BiGrphemb → Set denote

presheaves, g = (gL, gR, E
g), g′, h, h′ ∈ BiGrphemb bigraphs, and ι, ι′ : g ↪→ g′ bigraph embeddings. We will omit

subscripts when they are clear from the context.

De�nition 4.1 (Probabilistic local state monad). For all covariant presheaf X : BiGrphemb → Set and bigraph g ∈
BiGrphemb:

T (X)(g) :=

(
Pf

∫ g↪→h
X(h)× [0, 1](h−g)L

)[0,1]gL

where Pf is the �nite distribution monad.
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The assignment T is similar to the read-only local state monad, except that any fresh node can be initialized. Every

λ ∈ [0, 1]gL is thought of as the probability of the corresponding function/left node being true on a new fresh atom. We

will refer to such a λ as a state of biases. The coend takes care of garbage collection.

Notation 4.2. Equivalence classes in

∫ g↪→h
X(h)× [0, 1](h−g)L are written [xh, λ

h]g . We use Dirac’s bra-ket notation∣∣[xh, λh]g
〉
h

to denote a formal column vector of equivalence classes ranging over a �nite set of h’s. As such, a formal

convex sum

∑
i pi[xhi , λ

hi ]g ∈ Pf
∫ g↪→h

X(h)× [0, 1](h−g)L will be concisely denoted by

〈−→p ∣∣ [xh, λh]g
〉
h
.

De�nition 4.3 (Action of T (X) on morphisms).

T (X)(g
ι
↪−→ g′) =


(
Pf
∫ g↪→h

X(h)× [0, 1](h−g)L
)[0,1]gL

−→
(
Pf
∫ g′↪→h′

X(h′)× [0, 1](h
′−g′)L

)[0,1]g′L
ϑ 7−−→ λ′ 7→ let ϑ(λ′ιL) =

〈−→p ∣∣ [xh, λh]g
〉
h

in
〈−→p ∣∣∣ [X(h ↪→ h

∐
g g
′)(xh), λh]g′

〉
h

Theorem 4.4. The construction T is functorial and can be endowed with the structure of a monad.

We now use this monad to give a denotational semantics to our language.

5 Categorical semantics

In our language, the denotational interpretation of values, computations (return and let binding), and matching (elim-

ination of bool’s and product types) is standard. We interpret computation judgements Γ c̀ t : A as morphisms

JΓK→ T (JAK), by induction on the structure of typing derivations. The context Γ is built of bool’s, A and F and products.

Therefore, JΓK is isomorphic to an object of the form 2k × BiGrphemb(◦,−)` × BiGrphemb(•,−)m.

De�nition 5.1. For every bigraph g, we denote by Rg (resp. Lg) the set of bigraphs h ∈ g/BiGrphemb having one more

right (resp. left) node than g, and that are the same otherwise.

Rg := { h ∈ BiGrphemb | hL = gL, gR ⊆ hR and |hR| = |gR|+ 1 }
Lg := { h ∈ BiGrphemb | hR = gR, gL ⊆ hL and |hL| = |gL|+ 1 }

Denotation of Γ c̀ fresh() : A

The map JfreshKg : JΓK(g)→ T (JAK)(g) randomly chooses connections to each left node according to the state of biases,

and makes a fresh right node with those connections.

JfreshKg :


2k × BiGrphemb(◦, g)` × BiGrphemb(•, g)m −→ Pf(gR + 2gL)[0,1]

gL

_, _, _ 7→ λ 7→
〈

1

Z

∏
¤∈gL

λ(¤)E
h(¤,ah(•))(1− λ(¤))1−E

h(¤,ah(•))
∣∣∣∣ [ •︸︷︷︸
∼=(h−g)R

ah
↪−→ h, !

]
g

〉
h∈Rg

where Z is a normalization constant.

Denotation of Γ c̀ λמx. u : F

As λמ-abstractions are formed based on computation judgements of the form Γ, x : A c̀ u : bool, we �rst note that

T (JboolK)g ∼= Pf(2)[0,1]
gL ∼= [0, 1][0,1]

gL

Also, we can decompose the extra variable x in the environment Γ, x : A, the denotation of which is of the form

JΓ, x : AK(g) = 2k × BiGrphemb(◦, g)` × BiGrphemb(•, g)m × BiGrphemb(•, g) for a bigraph g ∈ BiGrphemb.
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Now, the extra part x is a right node, and its valuation will either be a node already in the graph described in the rest of

the environment, or a new one with particular edges to the rest of the environment. The argument u can test (if it wants)

what kind of node x is, before returning a probability.

As a result, for JuKg : 2k × BiGrphemb(◦, g)` × BiGrphemb(•, g)m × BiGrphemb(•, g) −→ [0, 1][0,1]
gL

, the denotation

JuK gives us the edge probability of the left node that we need to generate, both to the existing right nodes, and

to any future right nodes (which needs to be remembered). This can be formalized into a natural transformation

Jλמx. uK : JΓK→ T (JFK).

Jλמx. uKg :


2k × BiGrphemb(◦, g)` × BiGrphemb(•, g)m −→ Pf(gL + 2gR × [0, 1])[0,1]

gL

bk,
(◦

κi
↪−→ g)i,

(•
τj
↪−→ g)j

7→ λ 7→
〈

1

Z

∏
a∈gR

p
Eh(¤h(◦),a)
a (1− pa)1−E

h(¤h(◦),a)
∣∣∣∣ [ ◦︸︷︷︸
∼=(h−g)L

¤h
↪−→ h, _ 7→ p̃

]
g

〉
h∈Lg

where Z is a normalization constant, and

• for every a ∈ gR, pa := JuKg
(
bk, (◦

κi
↪−→ g)i, (•

τj
↪−→ g)j , •

a
↪−→ g, λ

)
• p̃ := JuKg

(
bk, (◦

κi
↪−→ g

ι1
↪−→ g + •)i, (•

τj
↪−→ g

ι1
↪−→ g + •)j , •

ι2
↪−→ g + •, λ

)
where ι1, ι2 are the coprojections.

Finally, we show that the monad T is commutative and a�ne, which yields an abstract model of probability (as de�ned

in [Koc11]) and implies that the language enjoys the data�ow property:

Theorem 5.2. The probabilistic local state monad T is strong commutative and a�ne.
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