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Abstract

My research is about probabilistic programming semantics and synthesis. More specifically, it is about the
semantics of probabilistic programming for Bayesian nonparametrics, and the integration of probabilistic pro-
gramming and large language models (LLMs) trained as amortized samplers (with Generative Flow Networks)
for safer and more interpretable AI systems. The extended report will be organized in two parts: theoretical
foundations on the one hand, and practical applications with probabilistic program synthesis on the other.
Part I is theoretical and develops a categorical semantics for LazyPPL, a Haskell-based library leveraging lazy
evaluation for infinite-dimensional Bayesian models (e.g., Poisson processes, Gaussian processes, Dirichlet
processes, etc.). Using quasi-Borel spaces and presheaf categories, we formalize properties like compositionality
and stochastic memoization, providing a categorical framework for compositional probabilistic reasoning. Part
II, more applied, introduces SynthStats, a new probabilistic program synthesis framework that leverages
GFlowNet-finetuned LLMs to do amortized sampling from distributions over statistical models (expressed as
probabilistic programs), given a natural language description. Initial experiments are promising. This line of
research posits that distribution-based synthesis of statistical models overcomes key limitations of “black-box”
deep learning solutions, contributing to more trustworthy AI through theory and applications.

Confirmation of Status: General Overview

Overview

Large language models (LLMs) show impressive capabilities across a broad range of tasks; however, getting
guarantees about their behaviour, particularly in safety-critical settings, remains an open problem. Three key
obstacles are commonly identified:

(i) Opacity/“black-box” aspect: The internal reasoning processes of LLMs are difficult to inspect directly,
hindering interpretability.

(ii) Uncertainty miscalibration: Model outputs lack reliable confidence scores, making it hard to gauge
whether the model’s predictions and assertions are trustworthy.

(iii) Informal semantics: LLM outputs exist in unstructured token spaces (text, code, images, etc.), lacking the
formal semantics often required for rigorous checking or verification.

Probabilistic programming languages (PPLs) [Mee+18], by contrast, offer features that address some of these
limitations. PPLs provide an explicit formal language for generative models, principled methods for uncertainty
quantification, and mathematically precise semantics [Sta+17; Ste21; VKS19].

In many ways, LLMs and PPLs have complementary strengths and weaknesses. LLMs excel at leveraging (a) rich,
amortised priors acquired from vast pre-training data (e.g., Llama 3 was trained on ∼15 trillion tokens, equivalent
to roughly 4 · 105 years of human reading time [Gra+24]), (b) understanding natural language instructions, and
(c) performing on-the-fly heuristic reasoning approximating System 2-style deliberation [Kah12] via chain-of-
thought (CoT) [Wei+22], particularly in RL-post-trained variants (e.g., OpenAI o-series [Ope+24], DeepSeek
R1 [Dee+25], Gemini “Thinking” [Goo25], Claude 3.7 Sonnet Thinking [Ant25]). However, they suffer from the
opacity, uncertainty miscalibration, and lack of formal semantics mentioned earlier. Conversely, PPLs express
explicit causal structures, support sound statistical inference, and possess formal, compositional programming
language semantics [Sta+17; Ste21; VKS19]. Their main drawback is that crafting high-quality models typically
requires domain expertise and significant manual effort. This complementarity motivates a hybrid approach:
leveraging LLMs’ generative power and world knowledge to propose probabilistic programs, while relying on the
structure and semantics of PPLs to ensure the interpretability and “auditability” of the resulting statistical models.

My DPhil research explores such a hybrid approach, developing both the theoretical foundations for expressive
PPLs (Part I of the planned thesis) and a framework for LLM-guided synthesis of PPL programs (Part II). The central
idea is to use LLMs, guided by deep learning amortized inference techniques like Generative Flow Networks
(GFlowNets) [Ben+21], not as unrestricted agents or opaque oracles providing final untrustworthy answers, but
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Aspect

LLMs

(Large Language Models)

PPLs

(Prob. Prog. Languages)

Strengths • Rich natural language priors
• Massive compute amortized
• Chain-of-thoughts reasoning

• Formal language and semantics
• Sound statistical inference
• Compositional, interpretable structure

Weaknesses

• Black-box (lack of interpretability)
• Uncertainty miscalibration
• No formal semantics

• Requires expert domain knowledge
• High effort to write complex models
• Expressiveness constrained by the
domain-specific language

Table 1: Complementary strengths and weaknesses of LLMs and PPLs.

as generators of structured, interpretable statistical models (expressed as probabilistic programs) whose meaning
can be formally analyzed. PPLs are chosen as the target language because they offer a convenient balance: their
formal semantics provide structure, while their expressiveness is sufficient for complex statistical modelling
(subsuming probabilistic graphical models [KF09], for example).

Part I of the planned thesis establishes semantic foundations centred on categorical probability, LazyPPL, and
stochastic memoization. Part II investigates LLM-guided synthesis using GFlowNets, leading to our SynthStats
framework.

Theoretical Foundations: Semantics for Expressive PPLs (Planned Thesis Part I)

Part I presents foundational work on the semantics of probabilistic programming, focusing on concepts relevant to
Bayesian nonparametric (potentially infinite-dimensional) models. Bayesian nonparametric models, like Gaussian
Processes (random functions) or Dirichlet Processes (clustering with an unbounded number of classes), are a
powerful approach to statistical learning: contrary to parametric models, they can have an unbounded number of
parameters that grows dynamically to fit the data.

(i) LazyPPL (POPL 2023) [Das+23; Laz25]. In collaboration with Staton, Dash, and Paquet, I contributed to
the development of LazyPPL, a Haskell library leveraging lazy evaluation for Bayesian nonparametrics.
LazyPPL’s design uses two monads: an affine probability monad Prob (of normalized distributions, for
sampling) and a non-affine measure monad Meas (of unnormalized distributions, for making observations).
Soundness is established via quasi-Borel spaces (QBS) categorical semantics. This enables compositional
expression of infinite structures in a declarative manner. For example, an unbounded Poisson Point Process
(PPP) with rate λ can be defined recursively as:
poissonPP :: R →R → Prob [R]
poissonPP t0 λ = do

step ← exponential λ -- Sample time to next event
l e t t = t0 + step -- Calculate event time
ts ← poissonPP t λ -- Recursively generate rest (lazily)
return (t : ts) -- Prepend to infinite stream

Laziness ensures only the points that are actually needed are computed (for example, by the viewport, for
plotting, at runtime), avoiding manual truncation required in eager PPLs. This facilitates composition: e.g.,
building a piecewise linear regression model by combining the PPP (for change points) with an infinite
lazy stream ( iid ) of functions from an arbitrary prior distribution.

(ii) Presheaf Semantics for Stochastic Memoization (MFPS 2023) [KS23]. Deterministic memoization
caches function results for efficiency, but does not alter semantics. Stochastic memoization, on the other
hand, by ensuring consistent random choices for repeated function calls with the same argument, does
change the programming language semantics, because it enables us to express infinite random structures in
Bayesian nonparametric models [Woo+09]. However, naively implementing memoization with state breaks
the crucial dataflow property (allowing reordering of independent computations), which is one of the tenets
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of probability. In joint work with Staton, we developed a novel an operational and categorical semantics
to stochastic memoization and name generation in the context of a minimal probabilistic programming
language, that correctly handles stochastic memoization while preserving dataflow property. The core
construct is a probabilistic local state monad T on the category [BiGrphemb, Set] of presheaves on finite
bipartite graphs g (representing memo-table states), defined as:

T (X)(g) :=

(
Pf

∫ g↪→h (
X(h)× [0, 1](h−g)L

))[0,1]gL

This definition models computations that: depend on an initial state (exponent [0, 1]gL ); can generate
new names/functions (coend

∫ g↪→h) probabilistically (Pf ); produce results (X(h)); and assign state to new
functions ([0, 1](h−g)L ). The monad structure ensures these effects compose correctly while preserving
dataflow. I also implemented a Haskell test-bed verifying this model empirically [KS23].

(iii) Graphons and PPL Interfaces (POPL 2024) [Ack+24]. In further collaborative work, led primarily by
Staton, we established a correspondence between equational theories for random graph-generating PPL
interfaces and graphons. My contribution focused primarily on the equational-theory-to-graphon direction
of the proof, which involved arguments based on exchangeability [Ack+24].

Collectively, these results provide semantic principles for expressive nonparametric PPLs, which will be detailed
in the full thesis.

LLM-Guided Probabilistic Program Synthesis: The SynthStats Framework (Planned Thesis

Part II)

Figure 1: High-level SynthStats pipeline. An LLM finetuned by a GFlowNet (amortized sampler) samples from a
distribution over probabilistic programs based on rewards.
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Part II addresses the challenge of automatically generating PPL programs from high-level natural language
specifications. The proposed framework, SynthStats, employs a Generative Flow Network (GFlowNet) [Ben+21;
Del+22; Mal+22] to fine-tune an LLM, based on my joint work with collaborators at Mila [Hu+24]. GFlowNets
are trained to learn a sampling policy PF over trajectories (e.g., sequences of reasoning steps and code tokens in
our case) such that the probability of sampling a trajectory terminating with a program p is proportional to an
unnormalized reward R(p), i.e., PF (p) ∝ R(p) [Ben+21]. This contrasts with traditional reinforcement learning
(RL), which optimizes for the single best program (argmaxpR(p)).

Specifically, SynthStats fine-tunes an LLM using a GFlowNet objective: the Sub-Trajectory Balance (SubTB)
loss [Hu+24; Mad+23], to perform amortized sampling over chains-of-thought Z (CoTs) leading to PPL programs
with the desired properties. The LLM generates a sequence including reasoning steps (in <thinking> tags)
followed by the PPL code. The reward R(p) reflects program quality based on execution, statistical validity,
and alignment with the prompt. The LLM-specific SubTB loss for a sequence Z = z1:n⊤ (where ⊤ denotes
termination) is:

L(Z; θ) =
∑

0≤i<j≤n

(
log

R(z1:i⊤)
∏j

k=i+1 qGFN(zk|z1:k−1)qGFN(⊤|z1:j)
R(z1:j⊤)qGFN(⊤|z1:i)

)2

(1)

where R(z1:k⊤) is the reward for terminating after k tokens, and qGFN represents the LLM’s forward sampling
probabilities (including termination⊤). Minimizing this loss enforces flow consistency, driving the policy towards
the target distribution p(Z) ∝ R(Z). By sampling proportionally to the reward, GFlowNets naturally handle
multi-modality of the posterior (multiple good programs) and capture uncertainty, providing a diverse set of
candidate models rather than a single, potentially overconfident solution. This distribution-matching objective
makes the approach more robust to reward misspecification compared to reward maximization in RL [Dee+25;
PBS21; Pan+23].

While the semantic work in Part I does not directly dictate the specifics of the probabilistic program synthesis
pipeline of Part II, the principles derived (e.g., semantic soundness, compositionality, principled uncertainty
handling via PPLs) inform the desiderata for the synthesized programs and the design of the framework. The
goal is to leverage the generative capabilities of LLMs, while grounding the output in the formal structure and
desirable properties of PPLs, leading to easier generation of interpretable statistical models.

Core Research Questions

This work addresses three core questions:

Q1: Semantic Foundations: What categorical structures (like QBS or presheaf models) are suited for model-
ing higher-order Bayesian nonparametrics [Das+23], and how to support stochastic memoization while
preserving key properties of categorical probability like the dataflow property [KS23]?

Q2: Practical Realisation: How can these semantic structures be implemented in a PPL like LazyPPL [Laz25], and
what inference algorithms (e.g., Metropolis-Hastings-Green on infinite rose trees [Das+23]) are compatible
with laziness and unbounded state spaces? Further, how to make this efficient in practice with GPU-
accelerated inference, and how to support expressive priors like state-of-the-art transformer models?

Q3: LLM-Guided Synthesis: Can GFlowNet-fine-tuned LLMs [Hu+24] learn to sample distributions over PPL
programs that are statistically and semantically sound, following principles from Part I, and aligned with
user specifications, thereby advancing techniques for safer automated statistical model discovery?

Thesis Roadmap and Structure

The structure of the planned thesis follows the organization illustrated in Figure 2. Part I will detail the theoretical
PPL foundations. Part II will introduce and develop the SynthStats framework, outlining its applications and
planned experimental validation. The anticipated timeline for completion is discussed below.
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Part I: Theoretical Foundations

Categorical Semantics

LazyPPL

Stochastic Memoization

Part II: LLM-Guided Synthesis

GFlowNets

Probabilistic Program Synthesis

Experiments

Formal semantics

Nonparametrics

Learning framework

Applications

Statistical
inference

Illustrates target
PPL properties

Basis for key
PPL features

Theory informs Practice

Figure 2: Planned thesis roadmap. Solid arrows denote primary dependencies within each part; dashed arrows
indicate how theoretical principles from Part I inform the goals and design of the synthesis work in Part II, and
vice versa.

Timeline and Future Directions

This subsection summarises the remaining work required to complete the DPhil by October 2025, and briefly
mentions research avenues extending beyond the thesis. The plan, accounting for work completed up to the
start of Q2 2025 (April), is shown in Figure 3. Key technical milestones are aligned with the thesis chapters and
experimental plan outlined previously.

For the period Q2 2025 - Q4 2025 the priorities are organised around three work-packages:

LazyPPL JAXBackend. Re-implement the coremonads Prob andMeaswith a JAX backend for GPU acceleration
(potentially enabling GFlowNet-based statistical inference within the PPL) and support for state-of-the-art
transformers as priors. Expose a compatible API with the Haskell version, and benchmark performance against
the original Haskell backend.

SynthStats Prototype. Finalise the GFlowNet-LLM pipeline for generating PyMC programs from natural-
language prompts, via posterior amortized inference over chains-of-thought with GFlowNets. Implement the
multi-component reward function. Build a benchmarking suite for automated model discovery and conduct
experiments against baseline methods.

Thesis Writing. Complete remaining chapters, crafting a coherent narrative that links the theoretical founda-
tions of Part I with the probabilistic program synthesis framework of Part II. Circulate full draft to my supervisor
by September 2025.
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Apr’25 Q2’25 Q3’25 Q4’25

Theory Write-up (Ch 1-3)
SynthStats Core Impl

Reward Function Design
Benchmark Development

Statistical Model Case Studies
LazyPPL JAX Backend

World-Modeling Experiments
Thesis Chapters 4-6 Write-up
Thesis Chapters 7-8 Write-up
Thesis Integration & Revision
[Future] Mechanistic Interp.
[Future] Safe AI Integration

Apr’25 Oct’25

Time

Figure 3: Overview of the DPhil research timeline (updated as of April 2025). Red dots mark target completion
points. The dashed line indicates the current date (April 2025), and the dotted line marks the thesis deadline
(October 2025).

Concluding Remarks

The work presented in this overview outlines a path from foundational categorical semantics of probabilistic
programming (Part I) to a practical probabilistic program synthesis framework (SynthStats, Part II). By delivering
the JAX backend for LazyPPL and the SynthStats prototype within the stated timeline, my goal is to combine
semantic principles and state-of-the-art deep learning models for more interpretable and uncertainty-aware
AI systems. The longer-term agenda aims for this research to have a meaningful impact in automated model
discovery, AI safety, and mechanistic interpretability.
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