Zeno of Elea : In a race, the quickest runner can
never overtake
the slowest.
$⇑$
Actually, modern math provide a solution :
$$\sum_{n>0} \frac{1}{2^n}$$ is convergent
$⟶$ How many additional guests can be housed ?
Cardinal : the number of elements of an unordered set
$\downarrow$
NB : Zeno paradox ⟹ $\aleph_0$ elements can be "written" within a finite space
Ordinal : the first label you’ll have to use in order to append 1 element to an ordered set
NB :
- For a finite number of elements : ordinal ⟺ cardinal
- $\aleph_0 + 1 = \aleph_0$, but $𝜔 + 1 \neq 𝜔$
Axiom of replacement : if you take an existing set and replace all elements with something else, you’re left with an other existing set.
We’re going to use it to the fullest !
$𝜔^3$
$𝜔^4$
$𝜔^𝜔$
$𝜔^{5}$
$𝜔^{𝜔^𝜔}$
$𝜔^{𝜔^{𝜔^{\vdots^{𝜔}}}}$
up to
$𝜀_0$
$\omega_1$
$\aleph_1$
$𝜔_2, 𝜔_3, \ldots, 𝜔_{𝜔}, \ldots, 𝜔_{𝜔^{𝜔^{𝜔^{\vdots^{𝜔}}}}}, 𝜔_{𝜀_0}, \ldots$
$\aleph_2, \aleph_3, \ldots$
$|𝒫(E)| = 2^{|E|}$
+
Axiom of replacement
$\downarrow$
Inaccessible cardinals