ARPE September presentation: Generalised Species of Structures

Marcelo Fiore, University of Cambridge

Younesse Kaddar Friday 27th September, 2019

Ecole Normale Supérieure Paris-Saclay

Table of contents

- 1. Introduction
- 2. Context
- 3. Studied article: "Generalised Species of Structures: Cartesian Closed and Differential Structure"
- 4. What's next?
- 5. Conclusion

Introduction

Motivations

Mind map of explored fields over my years at the $\ensuremath{\mathsf{ENS}}$

Author & Institution

Marcelo Fiore

University of Cambridge – Computer Laboratory

Project

Generalised Species of Structures [10, 11, 8, 1]

Project will involve

• presheaf categories (cf. M1 at Oxford [16])

Project

Generalised Species of Structures [10, 11, 8, 1]

Project will involve

- presheaf categories (cf. M1 at Oxford [16])
- monoidal and higher categories (cf. M2 at Macquarie in Sydney [15])

Project

Generalised Species of Structures [10, 11, 8, 1]

Project will involve

- presheaf categories (cf. M1 at Oxford [16])
- monoidal and higher categories (cf. M2 at Macquarie in Sydney [15])
- homotopy type theory (cf. L3 at Nottingham [14])

Context

Generalised species of structures

2008: "The cartesian closed bicategory of generalised species of structures" by Fiore, Gambino, Hyland, and Winskel [10] Generalisation of

• 1981: Joyal's species of structures [13]

Generalised species of structures

2008: "The cartesian closed bicategory of generalised species of structures" by Fiore, Gambino, Hyland, and Winskel [10] Generalisation of

- 1981: Joyal's species of structures [13]
 - algebraic account of types of labelled combinatorial structures

Generalised species of structures

2008: "The cartesian closed bicategory of generalised species of structures" by Fiore, Gambino, Hyland, and Winskel [10] Generalisation of

- 1981: Joyal's species of structures [13]
 - algebraic account of types of labelled combinatorial structures
 - structural counterparts of counting formal power series

Generalised species of structures

2008: "The cartesian closed bicategory of generalised species of structures" by Fiore, Gambino, Hyland, and Winskel [10] Generalisation of

- 1981: Joyal's species of structures [13]
 - algebraic account of types of labelled combinatorial structures
 - structural counterparts of counting formal power series
- 2003: Relational model of Ehrhard–Regnier's differential linear logic [6, 5, 4]

Generalised species of structures

2008: "The cartesian closed bicategory of generalised species of structures" by Fiore, Gambino, Hyland, and Winskel [10] Generalisation of

- 1981: Joyal's species of structures [13]
 - · algebraic account of types of labelled combinatorial structures
 - structural counterparts of counting formal power series
- 2003: Relational model of Ehrhard–Regnier's differential linear logic [6, 5, 4]
 - enrichment of Girard's linear logic [12]

Generalised species of structures

2008: "The cartesian closed bicategory of generalised species of structures" by Fiore, Gambino, Hyland, and Winskel [10] Generalisation of

- 1981: Joyal's species of structures [13]
 - algebraic account of types of labelled combinatorial structures
 - structural counterparts of counting formal power series
- 2003: Relational model of Ehrhard–Regnier's differential linear logic [6, 5, 4]
 - enrichment of Girard's linear logic [12]
 - extra rules to produce derivatives of proofs

Generalised species of structures

Also related to:

• ∞ -categories via **polynomial functors** [17]

Generalised species of structures

- ∞-categories via **polynomial functors** [17]
- Para-toposes [9], in connection to

Generalised species of structures

- ∞-categories via **polynomial functors** [17]
- · Para-toposes [9], in connection to
 - · higher-dimensional category theory (opetopes) [7, 3]

Generalised species of structures

- ∞-categories via **polynomial functors** [17]
- · Para-toposes [9], in connection to
 - · higher-dimensional category theory (opetopes) [7, 3]
 - resource calculi [18]

Generalised species of structures

- ∞-categories via **polynomial functors** [17]
- · Para-toposes [9], in connection to
 - · higher-dimensional category theory (opetopes) [7, 3]
 - · resource calculi [18]
- Homotopy Type Theory [2]: their calculus can be mimicked therein

Joyal's species: definition

Combinatorial species of structures P

A functor

$$P \colon \ \mathbf{B} \longrightarrow \ \mathbf{Set}$$
 groupoid of finite sets

Equivalently: P given by a family of symmetric group actions

$$[=]: P[n] \times \mathfrak{S}_n \longrightarrow P[n]$$

such that

$$p[\mathrm{id}] = p \qquad \qquad p[\sigma][\tau] = p[\sigma \cdot \tau] \qquad \forall p \in P[n], \, \sigma, \tau \in \mathfrak{S}_n$$

7

Joyal's species: intuition

Intuition: For a species $P: \mathbf{B} \longrightarrow \mathbf{Set}$

- $\cdot P(U) = \text{structures of type } P \text{ parameterised by the set of tokens } U$
- action of P = abstract rule of transport of structures (structural equivalence)

Figure 1: Schematic representation of a species

Joyal's species: generating series

Generating series of $P: B \longrightarrow Set$:

$$P(x) = \sum_{n \ge 0} |P[n]| \frac{x^n}{n!}$$

Equality of species:

Natural isomorphism (pointwise bijection + well-behaved with transport)

Arithmetic on generating functions $(+, \times, \circ, \partial) \longleftrightarrow$ Combinatorial calculus of species

Joyal's species: examples

Examples

- · Endofunctions:
 - End(U) := Hom_{Set} (U, U) $\forall U \in \mathbf{B}$
 - End(σ)(f) := $\sigma f \sigma^{-1}$ $\forall f \in \text{End}(U, U), \sigma \in \text{Hom}_{B}(U, V)$
- · Underlying set species $\mathcal{U} \colon B \hookrightarrow Set$
- $\cdot X^n := \operatorname{Hom}_{\mathbf{B}}(n, -)$
- Terminal species: $exp(X) := U \longmapsto \{U\}$
- · Initial species: $0 := U \longmapsto \emptyset$

Joyal's species: addition and multiplication

· Addition:

$$(P+Q)(U) := P(U) + Q(U)$$

Multiplication: Day's tensor product

$$P \cdot Q := \int^{U_1, U_2 \in B} P(U_1) \times Q(U_2) \times \text{Hom}_B (U_1 + U_2, -)$$

 \rightsquigarrow In [B, Set]:

$$(P \cdot Q)(U) = \sum_{U_1 \sqcup U_2 = U} P(U_1) \times Q(U_2)$$

Figure 2: Multiplication of species

Joyal's species: differentiation

· Differentiation:

$$(\mathrm{d}/\mathrm{d}x)P = P(-+x)$$

Figure 3: Differentiation of species

Joyal's species: composition

· Composition:

$$(Q \circ P)(U) := \int_{T \cap B} Q(T) \times (\underbrace{P \cdot \dots \cdot P}_{|T| \text{ fois}})(U)$$

 \rightsquigarrow In [B, Set]:

$$(Q \circ P)(U) = \sum_{\mathcal{U} \in \mathsf{Part} \; U} Q(\mathcal{U}) \times \prod_{u \in \mathcal{U}} P(u)$$

Figure 4: Composition of species

Joyal's species: composition

Analytic endofunctors on Set

 $\mathsf{Species} \longleftrightarrow \mathsf{Coefficients} \; \mathsf{of} \; \mathsf{analytic} \; \mathsf{endofunctors} \; \mathsf{on} \; \mathbf{Set}$

In this respect:

Composition of species = Composition of corresponding functors

Studied article: "Generalised

Species of Structures: Cartesian Closed and Differential Structure"

Generalised species: definition

Marcelo's draft article: "Generalised Species of Structures: Cartesian Closed and Differential Structure" [8]

For \mathbb{A} , \mathbb{B} small categories:

Generalised species: examples

Examples

- · Joyal's species are (1,1)-species
- But also: Permutationals [13], partitionals, presheaves, the Yoneda embedding, ...

Graphical calculus: $P: !A \longrightarrow \widehat{B}$ depicted pictorially as

Figure 5: Schematic representation of a generalised species

Generalised species: addition and multiplication

· Addition:

$$(P+Q)(A)(b) := P(A)(b) + Q(A)(b)$$

· Multiplication:

$$(P \cdot Q)(A)(b) := \int_{-A_1,A_2 \in B}^{A_1,A_2 \in B} P(A_1)(b) \times Q(U_2)(b) \times \operatorname{Hom}_{!A} (A_1 \oplus A_2, A)$$

Generalised species: differentiation

· Differentiation:

$$(\partial/\partial a) P(A)(b) = P(A \oplus [a])(b)$$

Generalised species: composition

· Composition:

$$:= \int_{x \in (!\mathbb{A})^{|B|}} \left(\prod_{k \in |B|} P(X_k)(B_k) \right) \times \operatorname{Hom}_{!\mathbb{A}} \left(\bigoplus_{k \in |B|} X_k, A \right)$$

$$(Q \circ P)(A)(c) = \int_{x \in (!\mathbb{A})^{|B|}} Q(B)(c) \times P^{\#}(A)(B)$$

Generalised species: Cartesian Closed Structure (products)

• Pairing of $P_i: \mathbb{C} \longrightarrow \widehat{\mathbb{C}}_i$:

$$\langle P_i \rangle_{i \in I}(C)(c) = \sum_{i \in I} \int^{z \in \mathbb{C}_i} P_i(C)(z) \times \operatorname{Hom}_{\prod_{i \in I} C_i} \left(c, \coprod_i z \right)$$

Generalised species: Cartesian Closed Structure (exponentiation)

Exponentiation:

$$(\lambda_{\mathbb{A}} P)(C)(A, b = P(C \otimes A)(b) \qquad \forall C \in !\mathbb{C}, A \in !\mathbb{A}, b \in \mathbb{B}$$

Tedious proofs

For example, to show the basic associativity and unit laws:

Proposition 2.3 For $P : A \longrightarrow B$, $O : B \longrightarrow C$, and $R : C \longrightarrow D$, we have canonical natural coherent isomorphisms as follow (10) $(R \circ O) \circ P \cong R \circ (O \circ P)$ establishing the unit laws of identities and the associativity of composition. PROOF: (In o P)(A)(b) $= \int^{B \in \mathbb{R}} \mathbb{IB} \left[\{b\}, B \right] \times \int^{A_{b'} \in \mathbb{M}} \left(b' \in B \right) \left(\prod_{b' \in B} P(A_{b'})(B_{\otimes b'}) \right) \times \mathbb{IA} \left[\bigotimes_{b' \in B} A_{b'}, A \right]$ $\cong \ \lceil^{b'\in \mathbb{B}}\, \mathbb{E}\, [b,b'] \times \lceil^{A'\in \mathbb{M}}\, P(A')(b') \times \mathbb{A}\, [A',A]$ \cong $\lceil b' \in \mathbb{B} \mid [b, b'] \times P(A)(b')$ ≅ P(A)(b) (P o Ta)(A)(b) $= \ \lceil^{A' \in \mathbb{A}} \, P(A')(b) \times \lceil^{X_\alpha \in \mathbb{A}} \, (\alpha \in A') \, ! \mathbb{A} \, \big[\{\!\{A'_{\otimes \alpha}\!\}, X_\alpha \big] \times ! \mathbb{A} \, \big[\bigotimes_{\alpha \in A'} X_\alpha, A \big]$ (12) $\cong \Gamma^{A' \in M} P(A')(b) \times [A [\bigotimes_{a \in A'} (A'_{ma}), A]$ ≅ P(A)(b) $\{(R \circ Q) \circ P\}(A)\{d\}$ $= \lceil^{B \in IB} (R \circ Q)(B)(d) \times \lceil^{A_b \in IA} (b \in B) \left(\prod_{b \in B} P(A_b)(B_{\otimes b}) \right) \times !\mathbb{A} \left[\bigotimes_{b \in B} A_{bs} A \right]$ $= \, \int^{B \oplus \mathbb{R}} \, \left(\, \int^{C \oplus \mathbb{C}} \mathsf{R}(C)(d) \times \int^{B_0 \oplus \mathbb{R}} \, (e \oplus C) \, \left(\, \prod_{c \in C} \mathsf{Q}(B_c)(C_{\oplus c}) \right) \times ! \mathbb{B} \left[\bigotimes_{c \in C} B_c, B \right] \, \right)$ (13) $\times \lceil^{A_b \in IA. (b \in B)} (\prod_{b \in B} P(A_b)(B_{S(b)})) \times IA. [\bigotimes_{b \in B} A_{b}, A]$ $\cong \lceil^{C \in IC} R(C)(d) \times \lceil^{B_0 \in IB} (c \in C) (\prod_{e \in C} Q(B_e)(C_{\otimes e}))$ $\times \ \int^{A_b \in \mathbb{M}} \left(b \in \bigotimes_{c \in C} B_c \right) \left(\ \prod_{b \in (\bigotimes_{c \in C} B_c)} P(A_b) \left((\bigotimes_{c \in C} B_c)_{\otimes b} \right) \right) \times \mathbb{IA} \left[\bigotimes_{b \in (\bigotimes_{c \in C} B_c)} A_b, A \right]$ $\cong \int^{C \in IC} R(C)(d) \times \int^{B_0 \in IS} (c \in C) (\prod_{e \in C} Q(B_e)(C_{\otimes e}))$ $\times \, \textstyle \int^{A_{b,c}\in \mathbb{M}} \, \left(c\in C, b\in B_{\alpha}\right) \left(\, \prod_{c\in C, b\in B_{\alpha}} P(A_{b,c}) \left((B_{c})_{\otimes b}\right)\right) \times |\mathbb{A}\left[\bigotimes_{c\in C} \bigotimes_{b\in B_{\alpha}} A_{b,c}, A\right]$

Tedious proofs

$$\begin{split} (R \circ (Q \circ P))(A)(d) &= \int^{C \in \mathbb{B}} R(C)(d) \times \int^{A_c \in \mathbb{A}_c} (\operatorname{eeC}) \left(\prod_{c \in C} (Q \circ P)(A_c)(C_{\otimes c}) \right) \times \operatorname{I}_{\mathbb{A}} \left[\bigotimes_{c \in C} A_{c_s} A \right] \\ &= \int^{C \in \mathbb{B}} R(C)(d) \\ &\times \int^{A_c \in \mathbb{A}_c} (\operatorname{eeC}) \left(\prod_{c \in C} \int^{B \in \mathbb{B}} Q(B)(C_{\otimes c}) \\ &\times \int^{X_b \in \mathbb{A}_c} (\operatorname{beB}) \left(\prod_{b \in B} P(X_b)(B_{\otimes b}) \right) \\ &\times \operatorname{I}_{\mathbb{A}} \left[\bigotimes_{c \in C} A_{c_s} A \right] \\ &\cong \int^{C \in \mathbb{B}} R(C)(d) \\ &\times \int^{A_c \in \mathbb{A}_c} (\operatorname{eeC}) \left(\int^{B_c \in \mathbb{B}} (\operatorname{eeC}) \left(\prod_{c \in C} Q(B_c)(C_{\otimes c}) \right) \\ &\times \left(\prod_{c \in C} \int^{X_b \in \mathbb{A}_c} (\operatorname{beB}_c) \left(\prod_{b \in B_c} P(X_b)((B_c) \otimes_b) \right) \\ &\times \operatorname{I}_{\mathbb{A}} \left[\bigotimes_{b \in B_c} X_{b_s} A_{c_s} \right] \right) \right) \\ &\cong \int^{C \in \mathbb{B}} R(C)(d) \\ &\times \int^{A_c \in \mathbb{A}_c} (\operatorname{eeC}) \left(\int^{B_c \in \mathbb{B}} (\operatorname{eeC}) \left(\prod_{c \in C} Q(B_c)(C_{\otimes c}) \right) \\ &\times \left(\int^{X_{b_c, s} \in \mathbb{A}_c} (\operatorname{eeC} (\operatorname{beB}_c) \left(\prod_{c \in C} \prod_{b \in B_c} P(X_{b, c})((B_c) \otimes_b) \right) \right) \\ &\times \prod_{c \in C} \operatorname{I}_{\mathbb{A}_c} \left[\bigotimes_{b \in B_c} X_{b, c_s} A_{c_s} \right] \right) \right) \\ &\cong \int^{C \in \mathbb{B}} R(C)(d) \\ &\times \int^{B_c \in \mathbb{B}} (\operatorname{eeC}) \left(\prod_{c \in C} Q(B_c)(C_{\otimes c}) \right) \\ &\times \int^{A_c \in \mathbb{A}_c} (\operatorname{eeC}) \left(\prod_{c \in C} \bigcap_{b \in B_c} P(X_{b, c})((B_c) \otimes_b) \right) \\ &\times \int^{A_c \in \mathbb{A}_c} (\operatorname{eeC}) \left(\prod_{c \in C} \bigcap_{b \in B_c} P(X_{b, c})((B_c) \otimes_b) \right) \\ &\times \int^{A_c \in \mathbb{B}_c} (\operatorname{eeC}) \right) \\ &\times \int^{A_c \in \mathbb{B}_c} (\operatorname{eeC}) \left(\prod_{c \in C} \bigcap_{b \in B_c} P(X_{b, c})((B_c) \otimes_b) \right) \\ &\times \int^{A_c \in \mathbb{B}_c} (\operatorname{eeC}) \right) \\ &\times \int^{A_c \in \mathbb{B}_c} (\operatorname{eeC}) \left(\prod_{c \in C} \bigcap_{b \in B_c} P(X_{b, c})((B_c) \otimes_b) \right) \\ &\times \int^{A_c \in \mathbb{B}_c} \operatorname{eeC} \left(\prod_{c \in C} \bigcap_{b \in B_c} P(X_{b, c})((B_c) \otimes_b) \right) \\ &\times \int^{A_c \in \mathbb{B}_c} \operatorname{eeC} \left(\prod_{c \in C} \bigcap_{b \in B_c} P(X_{b, c})((B_c) \otimes_b) \right) \\ &\times \int^{A_c \in \mathbb{B}_c} \operatorname{eeC} \left(\prod_{c \in C} \bigcap_{b \in B_c} P(X_{b, c})((B_c) \otimes_b) \right) \\ &\times \int^{A_c \in \mathbb{B}_c} \operatorname{eeC} \left(\prod_{c \in C} \bigcap_{b \in B_c} P(X_{b, c})((B_c) \otimes_b) \right) \\ &\times \int^{A_c \in \mathbb{B}_c} \operatorname{eeC} \left(\prod_{c \in C} \bigcap_{b \in B_c} P(X_{b, c})((B_c) \otimes_b) \right) \\ &\times \int^{A_c \in \mathbb{B}_c} \operatorname{eeC} \left(\prod_{c \in C} \bigcap_{b \in B_c} P(X_{b, c})((B_c) \otimes_b) \right) \\ &\times \int^{A_c \in \mathbb{B}_c} \operatorname{eeC} \left(\prod_{c \in C} \bigcap_{b \in B_c} P(X_{b, c})((B_c) \otimes_b) \right) \\ &\times \int^{A_c \in \mathbb{B}_c} \operatorname{eeC} \left(\prod_{c \in C} \bigcap_{b \in B_c} P(X_{b, c})((B_c) \otimes_b) \right) \\ &\times \int^{A_c \in \mathbb{B}$$

Overall results

Results

- composition → generalized species of structures form a bicategory
- addition and multiplication → commutative rig structure
- pairing/projection, abstraction/evaluation, and differentiation
 cartesian closed and linear structure

What's next?

ARPE Project

- Revising, finishing off and publishing the categorical theory of generalised species of structure [8]
- Characterizing the exponentiable para-toposes mentioned in Marcelo's unpublished joint work with André Joyal [9] related to generalised species of structure → further developments in connection to higher-dimensional category theory [7] and resource calculi [18]
- 3. Mimicing the calculus of generalized species in Homotopy Type Theory (HoTT) [2]
- 4. Connecting and investigating this from the ∞ -categorial viewpoint via polynomial functors [17]
- 5. Free symmetric strict monoidal completion = symmetric Fock-space construction. Operators of creation/annihilation of particles in corresponding quantum systems + commutation.
 - \longrightarrow Feynman diagrams in the context of generalised species.

Conclusion

References i

Homotopy Type Theory: Univalent Foundations of Mathematics.

J. C. Baez and J. Dolan.

Higher-Dimensional Algebra III: N-Categories and the Algebra of Opetopes.

R. Blute, J. R. B. Cockett, and R. A. G. Seely. Differential categories. 16:1049–1083.

T. Ehrhard.

An introduction to Differential Linear Logic: Proof-nets, models and antiderivatives.

References ii

T. Ehrhard and L. Regnier.

The differential lambda-calculus.

309(1):1-41.

M. Fiore.

An Algebraic Combinatorial Approach to the Abstract Syntax of Opetopic Structures.

M. Fiore.

Generalised Species of Structures: Cartesian Closed and Differential Structure.

page 28.

M. Fiore.

Theory of para-toposes.

References iii

M. Fiore, N. Gambino, M. Hyland, and G. Winskel.

The cartesian closed bicategory of generalised species of structures.

77(1):203-220.

M. P. Fiore

Mathematical Models of Computational and Combinatorial Structures.

In V. Sassone, editor, Foundations of Software Science and Computational Structures, volume 3441, pages 25–46. Springer Berlin Heidelberg.

I.-Y. Girard.

Linear logic.

50(1):1-101.

References iv

Une théorie combinatoire des séries formelles.

42(1):1-82.

Y. Kaddar, T. Altenkirch, and P. Capriotti.

Types are Brunerie globular weak omega-groupoids.

Y. Kaddar and R. Garner.

Tricocycloids, Effect Monoids and Effectuses.

Y. Kaddar and O. Kammar.

Event Structures as Presheaves.

J. Kock.

Notes on Polynomial Functors.

References v

T. Tsukada, K. Asada, and C.-H. L. Ong. Generalised species of rigid resource terms.

In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–12. IEEE.