
AT2 – Final Project: Coherent Patterns of Activity
from Chaotic Neural Networks

Younesse Kaddar

From “Generating Coherent Patterns of Activity from Chaotic Neural Networks” by
D. Sussillo and L.F.Abbott (2009)

IPYTHON NOTEBOOK DOCUMENTATION GITHUB REPORT

docsdocs passingpassing

1. Networks Architectures

We will consider (sparse) recurrent neural networks of  neurons, that can be thought of as
simple models actual biological neural networks:

the neurons are inter-connected by synapses (which may be excitatory or inhibitory)
each neuron’s membrane potential follows a leaky integrate-and-fire-looking differential
equation (which depends network architecture details)
the network is a linear combination of the neurons’ activites weighted by readout vector(s)
(the latter will be modified during the learning process)
there may be external inputs and/or the network output may be fed back to the network
(directly or via a feedback network).

Network Architecture A

The first network architecture is the following recurrent generator network:

NG

http://younesse.net/ipynb/neuromodeling/Project_Chaotic_Neural_Networks.html
https://chaotic-neural-networks.readthedocs.io/
https://github.com/youqad/Chaotic_Neural_Networks
http://younesse.net/Neuromodeling/Project_Chaotic_Neural_Networks/
https://chaotic-neural-networks.readthedocs.io/en/latest/?badge=latest


Figure 1.A - Network architecture A (image courtesy of David Sussilo)

where

the large cicled network is the generator network
 is the neurons’ firing rates
 is the readout vector: its weights are only ones prone to be modified during training

(indicated by the red color, contrary to the black connections, that remain unchanged
thoughout learning)

The only feedback provided to the generator network comes from the the readout unit.

Here, the membrane potential of neuron  is given by:

 is the neuron’s membrane potential
 is the time constant of the units dynamics

 is the synaptic weight/strength matrix of the generator network
 is the scaling factor of the synaptic weight matrix of the generator network
 is the readout unit weight matrix (applied when the readout unit is fed back in the

generator network)
 is the scaling factor of the feedback loop: 

increasing the feedback connections results in the network chaotic activity allowing the
learning process.

When it comes to the implementation:

Each element of  is set to  with probability . The nonzero elements thereof
are drawn from a centered Gaussian distribution with variance 
The elements of  are drawn from a uniform distribution between  and 
Nonzero elements of  are set initially either to zero or to values generated by a centered
Gaussian distribution with variance .
The network integration time step  and the time span between modifications of the
readout weights  may not be equal:

r
w

i ∈ [1, ]NG

τ = − + + zẋi xi gGG∑
j=1

NG

JGG
ij tanh( )xj

  
≝ rj

gGz
JGz

i

xi

τ = 10 ms
JGG

gGG

JGz

gGz

JGG 0 1 − pGG

1/pGG

JGz −1 1
w

1/( N)pz
dt

Δt



2. First-Order Reduced and Controlled Error (FORCE)
algorithm

Sussilo and Abott’s FORCE supervised learning algorithm makes it possible for chaotic recurrent
network output to match a large array of pre-determined activity patterns.

It is different from other classic learning algorithms in that, instead of trying to nullify the error as
qickly as possible, it:

reduces the output error drastically right away
but then keeps maintaining it small (instead of nullifying it), and rather focuses on
decreasing the number of modifications needed to keep the error small

Feeding back an output close but different to the desired one has the following advantages, among
others:

it avoids over-fitting and stability issues (indeed, and over-fitted chaotic nework may have
its activity diverge as soon as a non-zero error is fed back), making the whole procedure
suited for chaotic neural networks, in which are highly intersting, insofar as many models of
spontaneously active neural circuits exhibit chaotic behaviors.
it enable us to modify synaptic strength without restricting ourselves to specific neurons
(like ouput ones), which makes it all the more realistic, from a biological standpoint.

How and why does FORCE learning work?

How?

We initialize a matrix  - the estimate of the inverse of the network rates correlation matrix plus
a regularization term - as follows:

where  is the inverse of a learning rate: so a sensible value of 

depends on the target function
ought to be chosen such that 

Δt ≥ dt

P(t)

P(0) = I
1

α

α α

α << N



Indeed:

if  is too small, the learning is so fast it can cause unstability issues
if  is too large, the learning is so slow that it may end up failing

Then, at each time-step :

1. 

2. One compute the error before the readout vector update:

3. The readout vector is updated:

If , then it can be shown that the error is remains small from the first update on, and 
converges to a constant value, all thoughout  converging toward the pseudo-inverse of 

 and the error being reduced.

Why?

Essentially, FORCE relies on a regularized version of the recursive least-squares (RLS) algorithm
(that is, the online/incremental verison of the well-known least-squares algorithm).

Basically, what one attempts to do is an online regression (but with the contraints mentioned above),
where we try to find a predictor  such that:

of the form

So in a batch fashion, where we consider several observations for several consecutive timesteps (the 
 are the lines of a matrix ):

α

α

Δt

P(t) ⟵ (I − )P(t − Δt)
1

1 + ⟨r(t),P(t − Δt)r(t)⟩
P(t − Δt)r(t)r(t)

⊺

  
outer product

(t) = w(t − Δt r(t) − f(t)e− )
⊺

w(t) ⟵ w(t − Δt) − (t)P(t)r(t)e−

α << NG w

P

r(t)r(t + I∑
t

)
⊺ 1

α

f̂

f(t) = (x(t))f̂

(x(t)) = tanh( (t)) = ⟨ , w⟩f̂ ∑
i=1

NG

xi wi tanh(x(t))
  

= r(t)

r(t) R = tanh(X)

(X) = tanh(X)wf̂



In an online fashion: at each step , one has the input/desired output pair:

The squared prediction error thereof is:

In a batch way, given  input/desired output pairs:

the squared error is (where ):

It is convex with respect to , so to minimize it we set the gradient to zero:

i.e.

Therefore:

where  is the pseudo-inverse of .

So we are beginning to see where do this  come from, in the FORCE algorithm.

It’s even more blatant in the online version of the least squares algorithm: we see that  and  can be
computed incrementally at each time-iteration:

t

(x(t), f(t))

(t) = (f(t) −e− tanh(x(t + 1) w(t − Δt))
⊺

  
= ⟨r(t+1),w(t−Δt)⟩

)
2

n

(x(t), f(t)), … , (x(t + (n − 1)Δt), f(t + (n − 1)Δt))

t ≝ (t, t + Δt, ⋯ , t + (n − 1)Δt)
⊺

= ∥f(t) − (X) = ∥f(t) − Rwebatch
1

2n
f̂ ∥2

2

1

2n
∥2

2

= (f(t + iΔt) − ⟨r(t + iΔt), w⟩
1

2n
∑
i=0

n

)
2

w

0 = = − r(t + iΔt)(f(t + iΔt) − ⟨r(t + iΔt), ⟩)∇webatch
1

n
∑
i=1

n

w
∗

=( r(t + iΔt)r(t + iΔt )∑
i=1

n

)
⊺

  
≝ A

w
∗

r(t + iΔt)f(t + iΔt)∑
i=1

N

  
≝ b

= bw
∗ A♯

A♯ A

(A + I
1
α )♯

A b



Then,  can be estimated as:

The key point is that the pseudo-inverse  can be estimated with resort to the

Sherman-Morrison lemma (provided  is non-zero, which is what happens in our
case):

which is what gives the 's update-rule.

Implementation and Results

Our implementation makes use of object-oriented programming:

it can be found here as a python package
to import it with pip :

the documentation is here

The package structure is as follows:

Chaotic_Neural_Networks 

│ 
└───chaotic_neural_networks 
│   │   __init__.py 
│   │   utils.py 
│   │   networkA.py 
│    

!pip install git+https://github.com/youqad/Chaotic_Neural_Networks.gi
from chaotic_neural_networks import utils, networkA 

A(t + Δt) = A(t) + r(t + Δt)r(t + Δt)
⊺

b(t + Δt) = b(t) + r(t + Δt)f(t + Δt)

w
∗

w(t + Δt) = (A(t+Δt))♯ b(t+Δt)

(A(t+Δt))♯

A(0)

= −(A + r(t + Δt)r(t + Δt ))
⊺ ♯

A♯ r(t + Δt)r(t + ΔtA♯ )
⊺

A♯

1 + r(t + Δt r(t + Δt))
⊺
A♯

P

https://github.com/youqad/Chaotic_Neural_Networks
https://chaotic-neural-networks.readthedocs.io/


└───docs 
    │   ... 

utils.py  contains utility functions, among which target function such as a sum of
sinusoids, a triangle-wave, etc…
networkA.py  is the module related to the first architecture: the class NetworkA  is a way

to instantiate such a network (which can be fully parametrized with the optional
arguments). The three most important methods are:

error  which computes the average train/test error of the network
step , which executes one step of length dt  of the network dynamics
FORCE_sequence , which plots (returns a matplotlib figure to be precise) a full

training sequence of the FORCE algorithm: showing the evolution of the network
ouput(s), a handful of neurons membrane potential, and the time-derivative of the
readout vector  before training (spontaneous activity), throughout training, and
after training (test phase).

For instance: the following code

import matplotlib.pyplot as plt 
from chaotic_neural_networks import utils, networkA 
 
t_max = 2400 # in ms: duration of each phase (pre-training, training, and test) 
 
# Target function f: Sum of sinusoids 
network1 = networkA.NetworkA(f=utils.periodic) 
 
network1.FORCE_sequence(2400*3) 
 
plt.show() 

outputs:

ẇ



Figure 3.A.1 - FORCE training sequence (similar to Sussilo's figure 2), for a sum-of-
sinusoids target function

The code to generate the following training sequence plots is in the training_sequence_plots.py

file of the github repository (here).

Figure 3.A.2 - FORCE training sequence, for a triangle-wave target function

Average Train Error:  
Average Test Error: 

0.016
0.055

http://https//github.com/youqad/Chaotic_Neural_Networks/blob/master/training_sequence_plots.py


Considering the decrease of , we see that the learning process is far quicker for the triangle-wave
function than for the sum-of-sinusoids one (which is not surprising, as the triangle-wave is
piecewise linear): for the former, it takes between 3 and 4 periods for the learning to be complete.

Here are animated gifs of the FORCE learning phase for these target functions (the code to generate
these animations is in the Jupyter notebook, the function used is utils.animation_training ):

Evolution of FORCE learning for a sum of four sinusoids as target: 

Evolution of FORCE learning for triangle-wave as target:

Now, let us investigate more complicated patterns: we reiterate the FORCE learning procedure, but
this time for a significantly more complicated target:

| |ẇ



Figure 3.A.3.1. - FORCE training sequence: each phase lasting  ms, for a complicated
sum-of-sinusoids target function

Average Train Error:  
Average Test Error: 

Figure 3.A.3.2. - FORCE training sequence: each phase lasting  ms, for a complicated
sum-of-sinusoids target function

2400

0.725
5.730

4800



Average Train Error:  
Average Test Error: 

Figure 3.A.3.3. - FORCE training sequence: each phase lasting  ms, for a complicated
sum-of-sinusoids target function

Average Train Error:  
Average Test Error: 

0.880
5.789

7200

0.934
5.993



Figure 3.A.3.4. - FORCE training sequence: each phase lasting  ms, for a
complicated sum-of-sinusoids target function

Average Train Error:  
Average Test Error: 

It appears that the high variability of this target makes matters more complicated: when it comes to
learning, the network is still reasonably effective right away, but it has poor testing accuracy for
phases lasting less than 12 seconds (the train and test errors even increase until 7 seconds, and then
decreases for longer phases).

The network may also have several outputs, corresponding to several readout units. Here are some
instances of 2 and 3 output networks:

Two simultaneous outputs

Figure 3.A.4. - FORCE training sequence (each phase lasting  ms) for two
simultaneous outputs (each one associated to one of the two readout units): a sum-of-
sinusoids AND a triangle-wave target functions

Average Train Errors:  
Average Test Errors: 

Three simultaneous outputs

12000

0.893
5.887

2400

(0.017, 0.010)
(0.067, 0.040)



Figure 3.A.5. - FORCE training sequence (each phase lasting  ms) for three
simultaneous outputs (each one associated to one of the three readout units): a sum-of-
sinusoids, a triangle-wave and a cosine target functions

Average Train Errors:  
Average Test Errors: 

Principal Component Analysis (PCA)

As a matter of fact, most of the network activity can be accounted for by a few leading principal
components.

Indeed, after training the network so that it produces different target functions (for various numbers
of outputs), one can apply principal component analysis (PCA) to project the network activity on a
handful (8 is enough for the following examples) of principal components. Then, it appears that most
of the target patterns can be obtained from these few projections: out the hundreds of degrees of
freedom available (one thousand in our case, as ), only a dozens are actually necessary
to produce the target functions we have considered.

NB: the code to generate the following figures is in the principal_component_plots.py  file of the
github repository.

2400

(0.019, 0.012, 0.009)
(0.073, 0.050, 0.050)

= 1000NG



Figure 3.A.6. - Triangle-wave target function (one output): Approximation using activity
projected onto the 8 Leading Principal Components (LPC), Projections of network activity
onto the LPC, and (logscale) plot of PCA eigenvalues.

Figure 3.A.7. - Sum-of-sinusoids target function (one output): Approximation using
activity projected onto the 8 LPC, Projections of network activity onto the LPC, and
(logscale) plot of PCA eigenvalues.



Figure 3.A.8. - Triangle-wave and sum-of-sinusoids target functions (two outputs):
Approximation using activity projected onto the 8 LPC, Projections of network activity
onto the LPC, and (logscale) plot of PCA eigenvalues.

Figure 3.A.9. - Triangle-wave, sum-of-sinusoids and cosine target functions (three
outputs): Approximation using activity projected onto the 8 LPC, Projections of network
activity onto the LPC, and (logscale) plot of PCA eigenvalues.


