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PROBLEM 1: Poisson spike trains

Link of the iPython notebook for the code

Brain neuron emit spikes seemingly randomly: we will aim to model such spike trains, by relying on the
following assumptions:

1. spike events occur independently of one another
2. they occur at a constant firing rate 
3. there exists a time bin  within which no two spikes can be fired
4. within each time span , the probability of the neuron firing is .

In other words: the random variable  whose outcome is  (resp. ) if there is a (resp. no)
spike between  and  follows a Bernoulli distribution:

1. Generating spike trains

Let , where  is the length (in seconds) of the spike trains we will consider from now on.

In compliance with what we assumed before, a spike train can be modeled as a -dimensional random vector
whose -th coordinate (for ) is the output of  (the values of which are in ). In
concrete terms, when implementing such a vector of : at each coordinate, it has a constant probability
to be equal to  (  otherwise).

Example: For instance, if on average every fourth element in the vector is made to indicate a spike (i.e. is equal
to ), that is: the previously mentioned constant probability is equal to :
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Figure a. - Spike train such that there is a spike every fourth time bin on average

To clarify the time units, let us set

Then here is an example of a spike train:

Figure b. - Spike train with a  average rate over 

2. Spike counts & Interspike intervals

Now, informative features can be extracted from each spike train, such as:

Δt ≝ 2 ms
T = 1 s
r = 25 spikes/sec

25 spikes/sec 1 sec



its total number of spikes (which gives a global information about the spike train, but have us overlook
the time step at which each spike occurred)
the interspike intervals (which give us local clues on the contrary, but encompass the time-related
information we lost with the spike counts only)

A natural question to ask ourselves is: what is their distribution? To this end, let us generate  spike
trains with firing rate .

Here is the rastergram of  of them:

Figure c.1. - Rastergram of  spike trains with a  firing rate

Spike counts

Here is the spike count histogram of all of these  spike trains:

N ≝ 200
r ≝ 25 Hz

50

50 25 Hz

200



Figure c.2. - Histogram of spike counts for the  spike trains with firing rate 

We claim that spike counts are following a Poisson distribution of mean  (spikes), which may not seem
obvious at first sight with so few spike trains:

Figure c.3. - Comparison of the empirical distribution of  spike counts (with firing rate 
) and the Poisson distribution of mean 

However, it becomes more apparent when the number  of spike trains is increased. For  for
instance:

N ≝ 200 r ≝ 25 Hz

rT ≝ 25

N ≝ 200
r ≝ 25 Hz rT ≝ 25 spikes

N N ≝ 100000



Figure c.4. - Histogram of spike counts for the  spike trains with firing rate 

the spike counts distribution matches very well the Poisson one:

Figure c.5. - Comparison of the empirical distribution of  spike counts (with firing rate 
) and the Poisson distribution of mean 

This can be explained theoretically: the assumptions stated in the introduction make the Poisson distribution
perfectly suited to model the spike counts distribution. More precisely: by definition, the random variable 
counting the number of spikes is binomial:

as the  are independent (by hypothesis) and identically distributed ( ).

N ≝ 100000 r ≝ 25 Hz

N ≝ 100000
r ≝ 25 Hz rT ≝ 25 spikes
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But it is well known that the Poisson distribution  successfully approximates such a binomial

distribution provided that  is large enough and  is small enough. Here:

which makes the Poisson distribution , i.e. , perfectly suited to approximate the binomial
distribution !

Interspike intervals

Here is the interspike interval histogram of  spike trains with firing rate :

Figure d. - Interspike interval histogram of the  spike trains with firing rate 

From a theoretical standpoint: if we denote by  the random variable whose outcome is the length of an
interspike interval, in compliance with the assumptions in the introduction, it comes that:

So:

Therefore, by definition of its cumulative distribution function, the interspike interval variable  follows

an exponential distribution of rate 
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PROBLEM 2: Analysis of spike train

Link of the iPython notebook for the code

One records and analyses several spike trains from a single neuron in the primary somatosensory cortex of a
monkey experiencing a vibratory stimulus on the fingertip, for different vibration frequencies 

. The simulation is conducted between  and  msec.

Figure a. - Rastergram of the spike trains for the first  Hz vibration frequency

Figure b. - Rastergram of the spike trains for various vibration frequencies

As shown in Figure a. and Figure b., the spikes within the simulation period (between  and  msec):

seem to be periodically spaced for a given frequency 
are more and more numerous as the frequency increases

∈ {8.4, 12, 15.7, 19.6, 23.6, 25.9, 27.7, 35} Hzf1 200 700

8.4

200 700

f1
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and even more: the number of spikes seem to depend linearly on the vibration frequency.

The latter observation is backed up by the shape of the average spike count, plotted as a function of the
vibration frequency:

Figure c.1. - Average spike count as a function of the vibration frequency with standard deviation
errorbars

A linear regression of the average spike counts (as a function of the vibration frequency) can me made:

Linear equation:

Correlation coefficient: 
Standard error of the estimate: 

The very high correlation coefficient and very low standard error of the estimate highlight an almost perfect
match!

We have similar results for the average firing rate as a function of the vibration frequency:

y = 1.39x + 3.08

0.997
0.04



Figure c.2. - Average firing rate as a function of the vibration frequency with standard error of the
mean  errorbars

The linear regression yields:

Linear equation:

Correlation coefficient: 
Standard error of the estimate: 

As a result: the firing rate of the neuron can be regarded as a non-decreasing linear function of the vibration
frequency.

PROBLEM 3: Integrate-and-Fire neuron

Link of the iPython notebook for the code

We will now:

first study the integrate-and-fire model with a constant input current, to acount for the creation of
action potential (spikes) in real neurons
secondly make the input current vary over time, to try to account for the spike trains that were
experimentally measured in the primary somatosensory cortex of a monkey experiencing a vibratory
stimulus on the finger (cf. the previous problem)

1. Integrate-and-Fire neuron with constant input current

Voltage accross a passive membrane

SEM = σ/ N
−−√

y = 2.78x + 6.15

0.997
0.08
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The voltage across a passive neuron’s membrane when a current  is injected is given by:

where

 is the membrane capacitance
 is the leak conductance of the membrane

and  its reversal potential

On top of that, we will set

 to be equal to 
 to be equal to 

The Euler method yields:

which enables us, by setting , to plot the voltage until time  for instance:

Figure a. - Voltage accross a neuron's passive membrane for an injected current 

Now, for various current inputs :
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Figure b.1. - Voltage accross a neuron's passive membrane for positive different injected currents

Figure b.2. - Voltage accross a neuron's passive membrane for different positive and negative injected
currents

For positive currents: It appears that the voltage accross the passive membrane is a non-decreasing
monotonous function of the time (reaching a plateau after  ms in our case) which increases when the input
current does so.

For the negative currents: the curves are symmetric to the positive current ones with respect to the 
line.

To be more precise, let us solve for  analytically:

40

V = EL

V



And with :

The symmetry with respect to the  between negative and positive current curves is clearly seen in this
analytical expression.

Figure c. - Voltage accross a neuron's membrane: Comparison between the numerical solution and
the exact one

As seen in Figure c. the numerical solution resulting from the Euler method and the exact one closely match.

So, on the whole:
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the derivative of :

is positively proportional to : the higher the input current, the steeper the increase of .

Action-potential-generating mechanism

To account for spike generation, let us assume that the neuron fires each time  gets greater than a threshold 
, after which the membrane voltage is reset to its initial value . Let us set :

Figure d.1. - Voltage accross a neuron's membrane with spiking threshold  and an
injected current of  nA.

For an input current of  nA, we get  spikes within the first  ms. Let us investigate how the number of
spikes varies with the input current:
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Figure d.2. - Voltage accross a neuron's membrane with spiking threshold  and
different injected currents  nA

Figure d.3. - Voltage accross a neuron's membrane with spiking threshold  and
injected currents  and  nA

≝ −63 mVVth

≤ 0.75

≝ −63 mVVth

0.8 1.3



Figure d.4. - Voltage accross a neuron's membrane with spiking threshold  and
injected currents  and  nA

For  nA: The higher the input current, the steeper the increase of  (as shown before) and hence the
the faster  reaches the threshold: so, as expected, we observe that the higher the input current, the higher the
number of spikes within  ms.

But for  nA, no spike is fired. Indeed, the precise input current value at which the neuron start firing can
be computed analytically:

As it happens, with with  and :

Let us plot a rastergram of the spike trains for various injected currents, so as to to see more easily how the
number of spikes is impacted:
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Figure d.5. - Rastergram of spike trains with spiking threshold  for various injected
currents

For  nA, the number of spikes reaches its maximum value of  spikes within  ms.

To make it even more clear, let us plot the tuning curve of this neuron (i.e. the number of spikes within 
depending on the input current ):

Figure d.6. - Number of spikes within  as a function of the input current 

As shown before, the current threshold at which the neuron starts firing is

This makes sense intuitively:

≝ −63 mVVth

I ≥ 7.8 49 100

100 ms
I

100 ms I

≝ ( − )Ith gL Vth EL



the higher the difference , the more the voltage  has to increase to reach  within 
, and we saw previously that it requires a higher input current 

the higher the leak conductance  of the membrane, the lower the voltage  by Ohm’s law (as  is
inversely proportional to the conductance), and the higher the input current is required to be, to
compensate

Refractory period

Whenever the neuron depolarize until the voltage hits the threshold: it fires, then the voltage is reinitialized at 
, but it can be shown experimentally that the voltage doesn’t increase right away after having been reset: for

a fixed time span (the refractory period), the voltage remains constant, then at the end of the refractory period it
depolarizes again.

We can take into account this refractory period in our model:

Figure f.1. - Voltage accross a neuron's membrane with spiking threshold  and a  nA
input current, having a  refractory period.

On goes from  spikes (before) to  ones within the first  ms, with a  ms refractory period.

As expected: the higher the refractory period, the less spike the neuron fires within the same time span.
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Figure f.2. - Number of spikes within  as a function of the input current  for different
refractory periods.

With a white noise term

A more realistic model would take into account part of the noise there is in reality. A more noisy voltage accross
a neuron’s passive membrane could be given by:

where  is the noise magnitude and . The choice of a Gaussian distribution is accounted for by the
central limit theorem, since the noise can be thought of as a sum of many independent indentically distributed
processes.

The Euler method yields:

Thus:

The  stems from the fact that

so that the noise magnitude amounts to  when adding a  time step.

The white noise term makes it look more realistic:
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Figure g.1. - Voltage accross a neuron's membrane with spiking threshold , a  nA input
current and a  refractory period, for various noise magnitudes

Figure g.2. - Rastergram of spike trains with spiking threshold ,a  nA input current and a 
 refractory period, for various noise magnitudes

(h) What kind of current input  do you need so that this integrate-and-fire
neuron generates spike trains similar to the one you analyzed in Exercise (2)?
Design a current input that depends on the stimulation frequency . Create 
spike trains for each stimulus frequency, using the simulation from (f). How
does your model compare to the data?

2. Integrate-and-Fire neuron with time-varying input current to match
experimental data

−63 mV 1
5 msec

−63 mV 1
5 msec

I(t)

f1 10



Finally, let us try to model the experminental spike trains generated by a given neuron in the primary
somatosensory cortex of a monkey subject to a vibratory stimulus on the finger (as seen in the previous
problem).

Figure h.1. - Rastergram of the experimental spike trains for various vibration frequencies

To do so, a constant input current will not be enough, as shown in Figure g.2.: the rastergram is not likely to
match what is observed experimentally. And above all, the vibration frequency  has not even been taken into
account so far, which cannot but lead us to fail to model the experimental spike trains, as we showed that there
is a linear relationship between the average spike counts/firing rates and the vibration frequencies.

Looking at the experimental spike trains, we observed in the previous problem that the spikes seemed to occur
periodically within the simulation time span (between  and  ms): the higher the vibration frequency, the
smaller the interspike period.

This suggests a sinusoidal input current whose frequency is a multiple of the vibration frequency, modulated by
an envelope that decays out of the simulation period.

Gaussian envelope

With a Gaussian envelope, the time-varying input current

where , could look like this:

f1

200 700

I(t) ∝ exp(− ) cos( (t − μ)/200)
(t − μ)2

2s2
f1

μ = 450 ms, s = 150 ms



Figure h.2. - Sinusoidal input current with a Gaussian envelope

It leads to the following rastergram:

Figure h.3. - Rastergram of artifical spike trains induced by a sinusoidal input current modulated by a
Gaussian envelope, for various vibration frequencies

which is not satisfying, with regard to the experimental one.

Heaviside envelope

Another solution would be to go for a Heaviside envelope: the current is purely sinusoidal within the simulation
period, it is equal to zero everywhere else.

The resulting time-varying input current



could look like this:

Figure - Sinusoidal input current with a Heaviside envelope

The resulting rastergram:

Figure h.4. - Rastergram of artifical spike trains induced by a sinusoidal input current modulated by a
Heaviside envelope, for various vibration frequencies

resembles way more to the experimental one!

However, the average spike count/firing rate as a function of the vibration frequency is not satisfying: it is
somewhat anti-linear with respect to the vibration frequency!

I(t) ∝ { cos( (t − 200)/200) if t ∈ [200, 700] msf1

0 else



Figure h.5. - Average spike count as a function of the vibration frequency with standard deviation
errorbars

Figure h.6. - Average firing rate as a function of the vibration frequency with standard error of the
mean  errorbars

This can be explained by the fact that even though the frequency of spikes increases with the vibration
frequency , the width of the "spikes fired in a row" is decreasing (since the sinusoidal current curve is
becoming thinner and thinner, the current reaches high values during a shorter and shorter time as the
frequency increases). To overcome that, we would have to ensure that the width of the current waves remains
the same irrespective of the frequency: this can be achieved with square waves.

If the model somehow described what happens in reality, it would mean that the current injected though the
membrane of the monkey’s primary somatosensory cortex neuron when a stimulus vibrates at a frequency  on
its fingertip is:

null outside the simulation period

SEM = σ/ N
−−√

f1

f1



sinusoidal within the simulation period

leading to a voltage accross the membrane reaching the threshold voltage periodically (the higher the vibration
frequency, the smaller the period), which in turn induces an average firing rate depending linearly on .f1


