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PROBLEM 1: Neuron with Autapse

Link of the iPython notebook for the code

1. One-dimensional deterministic dynamical system

Let us consider a neuron whose axons connects to its own dendrites (the resulting synapse is called an
autapse): we will denote by

 its firing rate
 the strength of the synaptic connection

 an external inhibitory input
 the neuron’s activation function, where  is the overall neuron

input:

Figure 1.a. - Plot of the neuron's activation function 

(in arbitrary units) so that the firing rate is described by the following differential equation:
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w = 0.04
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Plotting the derivative  as a function of the neuron’s firing rate :

results in the following 1-dimensional system dynamics:

Figure 1.b. - Plot of the derivative as a function of the neuron's firing rate

The zero-crossings of  as a function of  correspond to critical points, i.e. values of  at which the
derivative  equals zero, hence the function  being constant with respect to . As a
consequence, such values of  at which  (as a function of ) vanishes are called fixed point of the
dynamics, as  is left unchanged over time.

Dynamics fixed points are twofold:

stable fixed points (attractors) are fixed points around which a slight change of  leads to 
moving back to the stable fixed point value: these correspond to points  such that the
derivative  is:

positive at  (  increases back to )
negative at  (  decreases back to )

for  sufficiently small. In other words, the zero-crossing goes from positive values to
negative ones.
On Figure 1.b., the two stable fixed points at  and  are indicated by a filled up
green point.
unstable fixed points (repellers) are fixed points around which a slight change of  leads to 
moving away from the unstable fixed point value: these correspond to points  such that the
derivative  is:

(t) = −x(t) + f(wx(t) + I)ẋ
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negative at  (  keeps decreasing away from )
positive at  (  keeps increasing away from )

for  sufficiently small. In other words, the zero-crossing goes from negative values to
positive ones.
On Figure 1.b., the only unstable fixed point at  is indicated by a hollow green circle.

Now, let us simulate the system for various initial conditions:

We set (arbitrary units):

the time-increment to integrate the differential equation with the Euler method: 

The total duration 

so that the Euler method yields:

Figure 1.c. - Simulation of the system for different initial conditions

As expected, since  is an unstable fixed point of the dynamics: when

:  remains constantly equal to  over time (as  is a fixed point)
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:  keeps increasing, converging to the (stable) fixed point , since the
time derivative  is strictly positive at  (cf. Figure 1.b.)

:  keeps decreasing, converging to the (stable) fixed point , since the
time derivative  is strictly negative at  (cf. Figure 1.b.)

2. One-dimensional stochastic dynamical system

From now on, for the sake of realism, we add a white noise component to the system:

where  is a Gaussian noise,  is the noise magnitude.

The stochastic differential equation is solved numerically as follows:

which leads to (for  and several random seeds):

Figure 2.d.1.1 - First seed: Simulation of the stochastic system for different initial conditions,
for a noise magnitude 
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Figure 2.d.1.2 - Second seed: Simulation of the stochastic system for different initial
conditions, for a noise magnitude 

Figure 2.d.1.3 - Third seed: Simulation of the stochastic system for different initial
conditions, for a noise magnitude 

the  initial condition starts from an unstable fixed point of the dynamics (as seen
before) when there is no noise: any slight variation of  relative to this unstable fixed point
leads to  moving away from this value. As it happens, here, this variation stems from the
noise added to the time derivative , which results in the unstable fixed point being slighly
moved aside, leading to  ending up above or below this unstable fixed point, and thus
converging toward one the two stable fixed points (  and ), depending on whether the noise
variation has drawn the unstable fixed point:

above  (leading  to decrease toward ), as in figure 2.d.1.3
or below  (leading  to increase toward ), as in figures 2.d.1.1 and 2.d.1.2

σ = 5

σ = 5

x(0) = 50
x

x(t)
ẋ
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the  (resp. ) initial conditions causes  to decrease (resp. increase)
toward the stable fixed point  (resp. ) when there is no noise (as seen before): any slight
variation of  relative to these stable fixed points bring  back to them. The only possibility
for  not to converge toward  (resp. ) instead would be that the noise added to derivative
has such a magnitude that it makes it positive (resp. negative) at , which doesn’t happen in
the three figures 2.d.1.1, 2.d.1.2, and 2.d.1.3*: the added noise magnitude is too small:  still
converges toward the expected fixed point.

Now for various noise magnitudes:

Figure 2.d.2.1 - First seed: Simulation of the stochastic system with , for
different noise magnitudes

Figure 2.d.2.2 - Second seed: Simulation of the stochastic system with ,
for different noise magnitudes
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Figure 2.d.2.3 - Third seed: Simulation of the stochastic system with ,
for different noise magnitudes

As the initial condition  starts from an unstable fixed point of the deterministic dynamics, 
may equiprobably converge to one the two stable fixed points when adding the noise, which makes this
case of little interest (it clutters the graphs uselessly). We may as well only plot the remaining relevant
cases ( ):

Figure 2.d.3.1 - First seed: Simulation of the stochastic system with , for
different noise magnitudes
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Figure 2.d.3.2 - Second seed: Simulation of the stochastic system with , for
different noise magnitudes

Figure 2.d.3.3 - Third seed: Simulation of the stochastic system with , for
different noise magnitudes

What appears in the above figures is that the bigger the noise magnitude  is, the more  is likely
not to converge toward the expected stable fixed point (i.e.  for ,  for ).

This can be accounted for by the fact that the fixed points of dynamics change all the more that the
noise magnitude is larger and larger: indeed, the larger the noise magnitude, the more the derivative 
is modified (as the noise is added to it) and the more it moves away from its original value: new zero-
crossings (i.e. fixed points) appear, other disappear, etc…:
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Figure 2.d.4 - Plot of the stochastic derivative as a function of the firing rate (and fixed points
of the dynamics), for different noise magnitudes

To back this up: here is the evolution of the fixed points of the dynamics for different noise magnitudes
(and different random seeds):

Figure 2.d.5.1 - First seed: Evolution of the stochastic dynamics fixed points for different
noise magnitudes



Figure 2.d.5.2 - Second seed: Evolution of the stochastic dynamics fixed points for different
noise magnitudes

Figure 2.d.5.3 - Third seed: Evolution of the stochastic dynamics fixed points for different
noise magnitudes

So the larger the noise magnitude, the “more” the set of fixed points is modified, resulting in  being
less and less likely to converge toward the expected stable fixed point (  for ,  for ).

PROBLEM 2: Circuit with mutual inhibition

Link of the iPython notebook for the code

x(t)
98 x > 50 2 x < 50

http://younesse.net/ipynb/neuromodeling/ProblemSet4_Problem2_Circuit-with-mutual-inhibition.html


Now, let us consider a two-neurons circuit in which the neurons mutually inhibit one another. We will
denote by

 and  the firing rates of the two neurons
 the inhibitory synaptic weight

 an excitatory external input
 the neurons’ activation function as before

1. Separate treatement of each neuron

We assume that we have the following differential equations:

which results in the following two-dimensional system dynamics flow:

Figure 1.a.1 - 2D flow of the system dynamics

The nullclines of this system are the curves given by:

x1 x2

w = −0.1
I = 5
f(s) ≝ 50 (1 + tanh(s))

{ (t) = − (t) + f(w (t) + I)ẋ1 x1 x2

(t) = − (t) + f(w (t) + I)ẋ2 x2 x1



Figure 1.a.2 - Phase portrait of the system dynamics and nullclines

Their crossing points are the points at which both the  derivative and the  one vanish, i.e. the fixed
points of the 2D-system dynamics. As before (cf. the previous problem), there are:

stable fixed points: here, the points  and 
unstable fixed points: here, the point 

We can easily check these are indeed fixed points of the dynamics:

For :

and it is symmetric for 
For :
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System simulation

We set (arbitrary units):

the time-increment to integrate the differential equation with the Euler method: 

The total duration 

so that the Euler method yields, for :

Figure 1.b.1 - Simulation of the system with 
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=0

dt = Δt ≝ 0.1
T = 10 = 100Δt
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Figure 1.b.2 - Simulation of the system with ( (0), (0)) ≝ (1, 2)x1 x2



Figure 1.b.3 - Simulation of the system with 

It appears that:

if  is on the identity line – i.e. if ) – :  converges
toward the  unstable fixed point, as exemplified by figure 1.b.1.
if  is strictly above the identity line – i.e. if ) – : 
converges toward the  stable fixed point, as exemplified by figure 1.b.2.
if  is strictly below the identity line – i.e. if ) – : 
converges toward the  stable fixed point, as exemplified by figure 1.b.3.

2. Vectorized system dynamics

We have hitherto treated each neuron separately, but there is a way to reduce the two differential
equations to a single vectorized one:

by setting:
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( (0), (0))x1 x2 (0) = (0)x1 x2 ( (t), (t))x1 x2
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(0, 100)
( (0), (0))x1 x2 (0) > (0)x1 x2 ( (t), (t))x1 x2

(100, 0)

(t) = −x(t) + f(Wx(t) + I)ẋ



as a result of which the Euler method gives:

And we get the same simulations as before, for example with the initial condition 
:

Figure 2.c. - Matrix-based simulation of the system with 
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PROBLEM 3: Hopfield Model

Link of the iPython notebook for the code

We will study the properties of a Hopfield network with  neurons, whose dynamics obeys the
following differential equation:

where

 is the firing rates vector
 is the  weight matrix

 is a Gaussian noise of magnitude 
the activation function  for the sake of simplicity

1. Storing a pattern

A pattern  is stored in the Hopfield network by setting:

Here are some examples of patterns, visualized as  images:

N = 64

= −x + f(Wx) + ση(t)ẋ

x

W N × N

η(t) σ = 0.1
f ≝ sign

p ∈ ({−1, 1})MN,1

W ≝ p
1

N
p

⊺

8 × 8

http://younesse.net/ipynb/neuromodeling/ProblemSet4_Problem3_Hopfield-model.html


Figure 1.a. - Visualizations of  patterns

To begin with, let us focus on storing the battery pattern :

Figure 1.b.1 - One Pattern stored: Battery

We set

Then, we simulate the network with resort to the Euler method (with time-increment 
(arbitrary units)):

which yields, for random starting patterns:

8 × 8

pbat

W ≝
1

N
pbatp

⊺
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dt = Δt ≝ 0.1

x(t + Δt) = (1 − Δt) x(t) + Δt sign(Wx(t)) + ση(t)Δt
−−−√





Figure 1.b.2 - One Pattern (battery) stored: Network simulation from different starting
patterns

It can be noticed that the network relaxes to two fixed points, in our examples:

the battery pattern: 
and its opposite pattern: 

From a theoretical standpoint, this can be explained by the fact that both  and  are fixed
points of the function

Indeed:

pbat

−pbat

pbat −pbat

x⟼ sign(Wx)



And:

Therefore, leaving the noise aside, by setting:

so that the corresponding dynamics without noise is given by:

it follows that:

As a result:  and  are fixed points of the corresponding deterministic (i.e. without
noise) dynamics, as a result of which the stochastic dynamics relaxes to them.

2. Storing two patterns

Now, let us add a new pattern :

sign (W )pbat = sign( ( ) )1

N
pbatpbat

⊺
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pbat pbat

⊺
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[ ]pbat
2
i  

= 1

  = N

= sign ( )pbat

= pbat

(because the matrix product is associative)

(because  ∈ ({−1, 1})pbat MN,1

 so sign ( ) = ∀1 ≤ i ≤ N  )[ ]pbat i [ ]pbat i

sign (W(− ))pbat = sign (−W )pbat

= −sign (W )pbat

= −pbat

(because sign is an odd function)

φ ≝ x⟼ −x + sign(Wx)

= φ(x)ẋ

φ( ) = φ(− ) = 0pbat pbat

pbat −pbat

pcom



Figure 2.c.1 - Two Patterns stored: Battery & Computer

so that

And we simulate the network on random starting patterns:

W = ( + )1

N
pbatp

⊺

bat pcomp
⊺

com





Figure 2.c.2 - Two Patterns (battery & computer) stored: Network simulation from
different starting patterns

Again, we can show that:

the battery pattern  and its opposite pattern: 
the computer pattern  and its opposite pattern: 

are stored, owing to the fact that they are fixed points of the corresponding deterministic dynamics.

Indeed (for the sake of convenience, we set  and ):

pbat −pbat

pcom −pcom

p ≝ pbat q ≝ pcom



But:

And for :

NB: alternatively, we could have used the Cauchy-Schwarz inequality:

Here, as:

it comes that:

Hence:
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⊺
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∀1 ≤ i ≤ N , [q [p = ε]i ]i
∀1 ≤ i ≤ N , [q = ε/[p = ε[p]i ]i ]i  (because [p ∈ {−1, 1 )}]i
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And likewise, by symmetry:

Once we know that  and  are fixed points, the same holds true for their opposites, as  is an odd
function (the proof is the same as previously).

So  and  are all fixed points of the corresponding deterministic dynamics, as a result of
which the stochastic dynamics relaxes to them.

NB: in the computations, the key point is the equality , which stems from  being different from 
(by Cauchy-Schwarz).

On top of that, it can be noted that the network relaxes to the fixed-point pattern which is the closest to
the starting pattern! For example, consider the second-to-last and the third-to-last examples in figure
2.c.2:

for both of these examples, in the starting pattern, we can distinguish what looks like the base
of a (future) screen
but the the second-to-last example converges to a bright-screen computer, whereas the third-
to-last converges to a dark-screen one. This can be accounted for by the fact that there are
more dark pixels in the third-to-last starting pattern than in the second-to-last one!

Therefore, we begin to see why Hopfield networks can be thought of as modeling an associative
memory-like process: the starting patterns are similar to “visual clues”, to which the network associates
the best (i.e. the closest) matching stored pattern.

3. The general rule

The general rule defining the weight matrix is:

where the  are the patterns to be stored.

sign (Wp) = sign(p + q)⟨q, p⟩
  ∈[−(N−1) , N−1]

N  
∈ ]−1,1[

sign (p)=
⊛

= p

(because each  [q ∈ [−1 + , 1 − ]⟨q, p⟩

N
]i

1

N

1

N

: it can't change the sign of [p ∈ {−1, 1} )]i

sign (Wq) = q

p q sign

±p ±q

⊛ q ±p

W ≝
1

N
∑
i=1

M

pip
⊺

i

pi



3 patterns: linear combinations stored

Let us add yet another pattern: :

Figure 3.d.1 - Three Patterns stored: Battery, Computer & Cup of coffee

so that, in compliance with the general rule:

 
Then, we simulate the network with random initial conditions:

pcof

W = ( + + )1

N
pbatp

⊺

bat pcomp
⊺

com pcofp
⊺

cof



 





Figure 3.d.2 - Three Patterns (battery, computer & coffee) stored: Network simulation
from different starting patterns

It appears that the networks relaxes to the following linear combinations of  too:

Figure 3.d.3 - Three Patterns (battery, computer & coffee) stored: Linear combinations 
 and  (respectively) that are also stored by the

network

So: on top of the patterns from which the weight matrix is constructed and their opposites,
linear combinations thereof may also be stored.

Storing capacity

Finally, we will investigate how many patterns we can store in this  neurons network by:

adding new patterns, one after another

{ , , }pbat pcom pcof

− −pbat pcom pcof

− +pbat pcom pcof

− −pbat pcom pcof − +pbat pcom pcof

N = 64



and then simulating the network with each pattern as initial condition to see if the pattern is
stored or not

Figure 4.d.1 - Weight matrix constructed out of one pattern (battery): network
simulation from this pattern (to check that it is stored)

Figure 4.d.2. - Weight matrix constructed out of two pattern (battery & computer):
network simulation from these patterns (to check that they are stored)



Figure 4.d.3 - Weight matrix constructed out of three patterns (battery, computer &
coffee): network simulation from these patterns (to check that they are stored)



Figure 4.d.4 - Weight matrix constructed out of four patterns (battery, computer, coffee
& thumbs up): network simulation from these patterns (to check that they are stored)



Figure 4.d.5 - Weight matrix constructed out of five patterns (battery, computer, coffee,
thumbs up & toolbox): network simulation from these patterns (to check that they are
stored)



Figure 4.d.6 - Weight matrix constructed out of six patterns: network simulation from
these patterns (to check that they are stored)



Figure 4.d.7 - Weight matrix constructed out of seven patterns: network simulation from
these patterns (to check that they are stored)





Figure 4.d.8 - Weight matrix constructed out of eight patterns: network simulation from
these patterns: not all of them are stored!





Figure 4.d.9 - Weight matrix constructed out of nine patterns: network simulation from
these patterns to check that not all of them are stored

As a consequence:

up until 6 (included) patterns: all the patterns are successfully stored
from 7 pattern on, some are not properly stored, and it gets worse and worse as the number of
patterns increases:

with 7 patterns: the computer screen is “prettified by bright pixels” (looking like
light reflection!), but not stored unaltered
with 8 patterns: on top of the light reflection on the computer screen, the copy icon
is not stored at all: the network converges to an out-of-shape computer screen. In the
same vein, the phone pattern ends up being deformed.
with 9 patterns: the battery pattern is not stored anymore, the computer base is
shifted, the cup of coffee, the thumbs up, the phone and the arrow are distorted, and
the copy icon keeps converging toward the computer (they must look too similar for
the full network’s pattern memory).

On the whole: the -neurons Hopfield network can perfectly store  patterns (and almost 
patterns, if it were not for the computer pattern ending up with a few bright pixels on the
screen).

64 6 7


