
AT2 – Neuromodeling: Problem set #2 QUANTITATIVE
MODELS OF BEHAVIOR

Younesse Kaddar

PROBLEM 1 - Rescorla-Wagner Model

Link of the iPython notebook for the code

Let us model a classical conditioning experiment with resort to the Rescorla-Wagner rule.

The experiment is as follows: at trial :

an animal may or may not be presented with a stimulus  (e.g.: ringing a bell, clapping hands): 
if the stimulus is present,  otherwise
… which may or may not in turn be followed by a reward  (e.g.: food):  if there is a reward, 

 otherwise

The animal is assumed to be willing to predict the correlation between the stimulus and the reward (e.g: by
salivating in anticipation): i.e. to predict if it will get the reward based on the presence or absence of the
stimulus. As such, the prediction of the animal is denoted by  at trial :

where  is a parameter learned and updated - trial after trial - by the animal, in accordance with the following
Rescola-Wagner rule:

1. Introductory example

For instance, let us suppose that there are  trials, and:

during the first  trials, both stimuli and reward are present ( )
during the last  ones, only the stimulus is present ( )

as illustrated by the following figure:
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Figure 1. - Introductory example: plot of stimulus and reward as a function of the trial index

In which case, according to the Rescola-Wagner rule, the animal prediction  is as follows:

Figure 1.2. - Introductory example: plot of the prediction , with  as a function of the trial
index

where the learning rate  is set to be .

It appears that the animal prediction  does tend toward the reward. Indeed, if  and  are
constant (as it happens here for the first  trials, and for the last  ones):

Therefore:
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As a result:

for the first  trials:  and , so that:

for the last  trials:  and , so that:

Changing the learning parameter 

Now, let us change the learning rate  in the previous example.

For 

Figure 1.3. - Introductory example: plot of the prediction  as a function of the trial index for
different values of 

As illustrated by the figure above, when : the bigger the learning rate , the faster the animal prediction
converges toward the reward.

Indeed, as shown above:
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so the bigger the learning rate , the lower the term , and the faster

 converges toward the reward  for the first  trials
 converges toward the reward  for the last  trials

It can easily be shown that this observation holds for any constant piecewise reward.

For 

Figure 1.4. - Introductory example: plot of the prediction  as a function of the trial index for
different values of 

Analogously, if : the term , and for the first (resp. last)  trials: 
(resp. ) converges toward the reward  (resp. ) while oscillating around it (since ). The
oscillation amplitude is all the more significant that  is big, i.e. that  is big.

Again, this result can be extended to any constant piecewise reward.
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Figure 1.5. - Introductory example: plot of the prediction  as a function of the trial index for
different values of 

Finally, if : the term , and  diverges as  does, while oscillating around it (since 
). The oscillation amplitude is all the more significant that  is big, i.e. that  is big.

Again, this result stands for any constant piecewise reward.

Going back to our conditioning experiment:

 corresponds to what is expected from the experiments: the bigger the learning rate, the
faster the convergence of the animal prediction, monotonously for a constant reward: hence
the name learning rate.

 and  are both degenerate cases:  is completely nonsensical from a
biological standpoint, and the oscillations of  are not what we want to model, which
is rather a convergence of the animal prediction straight to the reward.

2. Partial conditioning

Let us suppose that in each trial, the stimulus is present, but the presence of the reward is a random event with
probability .
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Figure 2.1. - Partial conditioning: plot of the reward as a function of the trial index

Similarly to what has been done in the previous section:

Figure 2.2. - Partial conditioning: plot of the animal prediction as a function of the trial index, for 
ε = 0.1



Figure 2.3. - Partial conditioning: plot of the animal prediction as a function of the trial index for
different values of 

Figure 2.4. - Partial conditioning: plot of the animal prediction as a function of the trial index for
different values of 
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Figure 2.5. - Partial conditioning: plot of the animal prediction as a function of the trial index for
different values of 

As it happens, the reward is a constant piecewise function, so the previous analysis applies here, by
focusing on each segment where the reward is constant (the stimulus is always equal to  here, which
simplifies things up). On top of that, we may stress that the shorter these segments are, the higher 
has to be, for the animal to learn the reward within these shorter time spans. The oscillating cases are
still irrelevant from a biological standpoint.

3. Blocking

Now, we assume that there are two stimuli,  and , and two parameters,  and  to learn, and that the
animal prediction is given by .

During the first  trials, only one stimulus and the reward are present, during the next  trials, both stimuli
and the reward are present.

For the record, here is what happens when there is one single stimulus and :
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Figure 3.1. - Plot of the animal prediction as a function of the trial index for one single stimulus (
)

Now, with aforementioned two stimuli:

Figure 3.2. - Plot of the animal prediction for two stimuli  and one single stimulus  ( )

To be more precise, here is the evolution of  and  throughout the trials:

TRIAL

1 0.1 0.

2 0.19 0.

3 0.271 0.

4 0.3439 0.

5 0.40951 0.

ε = 0.1

,u1 u2 u1 ε = 0.1

w1 w2

w1 w2



TRIAL

6 0.468559 0.

7 0.5217031 0.

8 0.56953279 0.

9 0.61257951 0.

10 0.65132156 0.

11 0.6861894 0.

12 0.71757046 0.

13 0.74581342 0.

14 0.77123208 0.

15 0.79410887 0.

16 0.81469798 0.

17 0.83322818 0.

18 0.84990536 0.

19 0.86491483 0.

20 0.87842335 0.

21 0.89058101 0.

22 0.90152291 0.

23 0.91137062 0.

24 0.92023356 0.

25 0.9282102 0.

26 0.93538918 0.00717898

27 0.94113237 0.01292216

28 0.94572691 0.01751671

29 0.94940255 0.02119235

30 0.95234306 0.02413286

31 0.95469547 0.02648527

32 0.95657739 0.02836719

33 0.95808294 0.02987273

34 0.95928737 0.03107717

35 0.96025092 0.03204071

36 0.96102175 0.03281155

37 0.96163842 0.03342822

38 0.96213176 0.03392156

39 0.96252643 0.03431623

40 0.96284216 0.03463196



TRIAL

41 0.96309475 0.03488455

42 0.96329682 0.03508662

43 0.96345848 0.03524827

44 0.9635878 0.0353776

45 0.96369126 0.03548106

46 0.96377403 0.03556383

47 0.96384024 0.03563004

48 0.96389321 0.03568301

49 0.96393559 0.03572539

50 0.96396949 0.03575929

There is a phenomenon of blocking in the sense that: when  appears (from the trial  on), the
prediction error is already close to zero (the animal has already almost exclusively associated the
presence of the reward with the presence of the first stimulus only), so that the second stimulus is
hardly taken into account, compared to the first one (hence the blocking).

4. Overshadowing

We still suppose that there are two stimuli and two parameters to learn. However, now:

both stimuli and the reward are present throughout all the trials.
one of the learning rates is larger:  for the first stimulus, and  for the other one

Figure 4.1. - Plot of the animal prediction for two stimuli  (with ) and one
single stimulus  (with )

Here is the evolution of  and  throughout the trials:
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TRIAL

1 0.2 0.1

2 0.34 0.17

3 0.438 0.219

4 0.5066 0.2533

5 0.55462 0.27731

6 0.588234 0.294117

7 0.6117638 0.3058819

8 0.62823466 0.31411733

9 0.63976426 0.31988213

10 0.64783498 0.32391749

11 0.65348449 0.32674224

12 0.65743914 0.32871957

13 0.6602074 0.3301037

14 0.66214518 0.33107259

15 0.66350163 0.33175081

16 0.66445114 0.33222557

17 0.6651158 0.3325579

18 0.66558106 0.33279053

19 0.66590674 0.33295337

20 0.66613472 0.33306736

21 0.6662943 0.33314715

22 0.66640601 0.33320301

23 0.66648421 0.3332421

24 0.66653895 0.33326947

25 0.66657726 0.33328863

26 0.66660408 0.33330204

27 0.66662286 0.33331143

28 0.666636 0.333318

29 0.6666452 0.3333226

30 0.66665164 0.33332582

31 0.66665615 0.33332807

32 0.6666593 0.33332965

33 0.66666151 0.33333076

34 0.66666306 0.33333153

35 0.66666414 0.33333207

w1 w2



TRIAL

36 0.6666649 0.33333245

37 0.66666543 0.33333271

38 0.6666658 0.3333329

39 0.66666606 0.33333303

40 0.66666624 0.33333312

41 0.66666637 0.33333318

42 0.66666646 0.33333323

43 0.66666652 0.33333326

44 0.66666656 0.33333328

45 0.6666666 0.3333333

46 0.66666662 0.33333331

47 0.66666663 0.33333332

48 0.66666664 0.33333332

49 0.66666665 0.33333332

50 0.66666665 0.33333333

There is a phenomemon of overshadowing: the first stimulus ends up being taken into account twice as
much as the second (overshadowing it), as it has been learned at a rate two times bigger.

PROBLEM 2: Simple decision strategy for flower sampling
by bees.

Link of the iPython notebook for the code

Let us consider the following experiment: a bee lands on flowers to collect as much nectar as possible, during
two day (granting that it lands on  flowers a day). There are two kinds of flowers:

blue flowers, which carry a nectar reward of
 during the first day
 during the second day

yellow flowers, which carry a nectar reward of
 during the first day
 during the second day

The bee’s internal estimate for the rewards is  (resp. ) for the blue (resp. yellow) flowers. The bee chooses
to land on a blue flower with probability (softmax-strategy):
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where  is called the "exploitation-exploration trade-off" parameter (we will explain why in the following
section).

1. The softmax-strategy

Note that  is a sigmoid of  (for a fixed ) and a sigmoid of  (for a fixed ).

Figure 4.1. - Plot of  for different values of 

Thus:

the larger , the higher the bee’s internal estimate of the yellow flower is compared to the blue
one. As a consequence, the lower the probability  of the bee landing on the blue one.
the lower the reward difference, the worse the bee considers the yellow flower to be, compared to the
blue one, and the greater the probability  of the bee landing on the blue flower.
in between: the bee’s behavior is a mix between exploiting what the bee deems to be the most nutritious
flower and exploring the other one (which is what is expected).

Symetrically:
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Figure 4.1. - Plot of  for different values of 

The “exploitation-exploration trade-off” parameter 

For 

As seen in the previous figures: the parameter  plays the same role as the inverse temperature  in

statistical physics. That is, for :

When : the bigger  is (which corresponds, in physics, to a low temperature/entropy), the
more the bee tends to exploit the seemingly most nutritious flower. As a result:

if  (i.e. the yellow flower seems more avantageous to the bee), the probability of
the bee landing on the blue flower rapidly decreases to 
if  (i.e. the blue flower seems more advantageous to the bee), the probability of
the bee landing on the blue flower rapidly increases to 

When : the lower  is (high temperature/entropy in physics), the more the bee tends to explore
the flowers.
Indeed: as ,  becomes less and less steep, to such a point that it ends up being the constant
function  when  (at this point, the bee does nothing but exploring, since landing on either of
the flowers is equiprobable, no matter how nutritious the bee deems the flowers to be)
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The curves for  are symmetric to those for  with respect to the y-axis, which makes no sense
from a behavioral point of vue: it means that the most nutritious a flower appears to the bee, the less likely
the bee is to land on it (and conversely)!

2. Dumb bee

Now, let us assume that the bee is “dumb”, i.e. it does not learn from experience: throughout all the trials, the
internal reward estimates remain constant: .

Figure 2.1. - Dumb bee: Behavior for 

−β < 0 β > 0

= 5, = 0my mb

β = 0



Figure 2.2. - Dumb bee: Behavior for β = 0.5



Figure 2.3. - Dumb bee: Behavior for 

So it appears that

for : the bee’s behavior is the most exploratory one: the probability of landing on a blue flower as
well as a yellow flower is , irrespective of the internal estimates  and 
for : this  corresponds to a perfectly balanced exploration-exploitation tradoff, but here: as 

 is significantly higher that ,  (which are constant, as the internal
estimates are constant)
for : the bee’s behavior is the most exploitative one. As , : the bee keep
exploiting the flower it deems the most nutritious (i.e. the yellow ones).

On the whole, this behavior can reasonably be called “dumb”, since the bee takes no account of the
actual rewards of the flowers whatsoever (its internal estimates remain constant and don’t depend on
these actual rewards).

3. Smart bee

Now let us suppose that the bee is “smart”, i.e. it can learn from its experiences. Whenever it visits a flower, it
updates its estimated reward as follows:
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β = 0
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β = 0.5 β
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mb
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→ + ε( − )my ry my



Given a learning parameter  and the initial assumptions about flower reward from above (
), simulate the bees sequence of choices during the two days. How do the reward estimates

change over time? Explore the case of purely explorative behavior ( ) and the case of strongly exploitative
behavior ( ). What do you observe?

Figure 3.1. - Smart bee: Behavior for 

ε = 0.2
= 5, = 0my mb

β = 0
β = 1

β = 0



Figure 3.2. - Smart bee: Behavior for β = 0.5



Figure 3.3. - Smart bee: Behavior for 

It appears that

for : no surprise, the bee’s behavior is the most exploratory one: the probability of landing on a
blue flower as well as a yellow flower is , irrespective of the internal estimates  and 
for : the bee’s behavior is the most exploitative one. Similarly to the Rescola-Wagner rule, the
updating rule makes the internal estimates converge toward the actual rewards of the flowers, and as
result: the exploitative behavior causes the probability  (resp. ) to match the evolution of
the internal estimate  (resp. ) when  (resp. ): the bee exploit the flower type
which has the highest current estimate.
for : it is a mixed behavior bewteen exploitation and exploration: compared to the case ,
there are some discrepancies in the update of the internal estimates, since the bee may not always
exploit the flower type which has the best current estimate (exploratory behavior).

On the whole, this behavior can reasonably be called “smart”, since the bee, depending on the value of 
:

takes more or less into account the actual rewards of the flowers by exploiting the seemingly
most nutritious flower (exploitation, increasing with )
while, from time to time, completely ignoring its internal estimates and exploring the other
flower (exploration, decreasing with )
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PROBLEM 3: The drift diffusion model of decision-making.

Link of the iPython notebook for the code

We consider a two-alternative forced choice task (2AFC-task): the subject (e.g. a monkey) sees a cluster of
moving dots (in many directions) on a screen and is to choose (whenever he/she/it wants) whether they are
moving upwards or downwards.

In the drift-diffusion-model, the subject is assumed to compare two firing rates:

one firing rate of an upward-motion sensitive neuron, denoted by 
and another one from a downward-motion sensitive neuron, denoted by 

Then, the subjects integrates the difference as follows:

where  is a Gaussian white noise.

For a given threshold :

if  then the subject chooses 
else if  then the subject chooses 

We have the following discrete approximation of the drift-diffusion-model:

1. Reaction times

Let , and .

Let us run the drift-diffusion-model ten times with the above parameters, with resort to the Euler method:

mA

mB

= − + ση(t)ẋ mA mB

η(t) ∼ N(0, 1)

μ

x ≥ μ A

x ≤ −μ B

x(t + Δt) = x(t) + ( − ) Δ t + ση(t)mA mB Δt
−−−√

≝ 1, ≝ 0.95, σ ≝ 0.5, x(0) ≝ 0mA mB Δt ≝ 0.1 ms
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Figure 3.1. - Ten runs of the drift-diffusion-model, with 

Now, after running the model  times and storing the outcome and the time of threshold crossing (denoted by 
) for each run: let us plot the distribution of reaction times for outcome  and , given that the reaction time

is given by:

For :

Figure 1.1. - Distribution of reaction times for outcome  and  after running the model 
 times

For :

≝ 1, ≝ 0.95, σ ≝ 0.5, x(0) ≝ 0mA mB

N

ti A B

R = 100 +Ti ti

N ≝ 1000

A B

N = 1000

N ≝ 10000



Figure 1.2. - Distribution of reaction times for outcome  and  after running the model 
 times

2. Probability of outcome 

Let us define the evidence for outcome  versus outcome  as:

The analytical formula of the probability of outcome  is:

where .

Let us compare it, for values of  ranging from  to , with the empirical probability we can get from
our simulation, by running the model  times (for  sufficiently large) and computing:

The problem is that we have to compute this empirical probability for several values of  ranging from 
to ! As a matter of fact: the previous naive algorithm, based on the Euler method, is far too slow…

But we can cope with that with a trick!

Fast algorithm to compute the distribution of reaction times

From the discrete approximation of the drift-diffusion-model:

A B

N = 10000
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≝ −mE mA mB
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≝pA

1

1 + exp(−β )mE

β ≝
2μ

σ2

mE −0.2 0.2
N N

P(A) ≝
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mE −0.2
0.2

x(t + Δt) = x(t) + Δ t + ση(t)mE Δt
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So for all :

where the

are independent and normally distributed random variables.

But it is well known that a sum of independent and normally distributed random variables is also a normally
distributed variable, such that:

i.e.

But as it happens:

So for all , we can set  to be:

where 

So solving for  in the threshold crossing conditions:

is tantamount to:

Analysis: solving (for , in ) two quadratic equations for a given :

Synthesis: keeping only the roots  such that , and setting 

which gives us a very fast algorithm!
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Figure 2.1. - Distribution of reaction times for outcome  and  computed with the previous trick

Finally, we can compare the empirical probability of outcome  with the analytical one:

Figure 2.2. - Comparison of the empirical probability of outcome  with  (as functions of ), for
different values of 

A B

A

A pA mE
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Figure 2.3. - Comparison of the empirical probability of outcome  with  (as functions of ), for
different values of 

We see that the empirical probability of outcome  matches more and more  (when it comes to the shape of
the curve):

as  increases
as  decreases (with an almost perfect match above for )

A pA mE

μ

A pA

μ

σ σ = 0.3


