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Studied articles: Visualizing MNIST, Visualizing Representations (C. Olah), Visualizing Data using t-SNE (L. Van der
Maaten & G. Hinton) + added Isomap and LLE to the dimensionality reduction overview

Dimensionality reduction

The bottom line of dimensionality reduction (DR) is: how to turn high-dimensional data into lower-dimensional data,
so that we can vizualize it more easily? The usefulness of DR relies on the manifold hypothesis, according to which
real-world high-dimensional data vectors lie in a lower-dimensional embedded manifold. First, we’ll make an
overview of a handful of DR methods. Assume that we are given  data points .

Multidimensional Scaling (MDS)

Goal: Preserve the distances between points in the data space, so as to conserve the geometry of the data. We
denote by  (resp. ) the distance in the original space (resp. our visualization). Then we resort to gradient descent

to minimize the cost function 

Sammon’s mapping

It is a tweak of MDS to ensure that the smaller the distance between two data points is in the original data space, the

more it is preserved. The cost function to be minimized is 

Force-directed Graph Drawing

Goal: Use physical intuition! Build the graph whose the vertices are the data points, where each point is connected
to its  nearest neighbors in original space. The vertices are then seen as repelling charged particles, and the edges
as springs. As with electric potential energy and spring energy, we minimize the (potential) energy function 

Principal component analysis (PCA)

Goal: Find a few orthogonal vectors/axes onto which the variance of the data points under projection is maximal,
i.e. find the best possible “angles” from which the data points are the most spread out.
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http://colah.github.io/posts/2014-10-Visualizing-MNIST/
http://colah.github.io/posts/2015-01-Visualizing-Representations/
http://jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://en.wikipedia.org/wiki/Electric_potential_energy#Energy_stored_in_a_system_of_two_point_charges
https://en.wikipedia.org/wiki/Hooke%27s_law#Spring_energy


Isomap

Goal: Similar to MDS, except that we take into account the curvature of the data space: the distance used is no
longer the euclidean one but the geodesic one, where the length of paths on curved manifold surfaces are measured
as if the surfaces were flat.

Locally-Linear Embedding (LLE)

Goal: Preserve the relationship between neighboring points.

1. Find the weight matrix  - whose rows sum to  - that minimizes the cost function: 

2. Map each data point  to a point  in the vizualization, such that the 's minimize the cost function 

t-Distributed Stochastic Neighbor Embedding (t-SNE)

This very popular technique is similar to the graph drawing one, except that the relation “being neighbors” is here
turned into a “continuous range of neighborness”.

1. Compute conditional probabilities  that  has  as its neighbor if neighbors were chosen according to

a Gaussian distribution centered at 

2. Then, we define the joint probabilities  as the symmetrized conditional probabilities 

3. Similarities  between two points in the visualization are computed with resort to a Cauchy distribution.
This distribution approaches an inverse square law for large distances in the visualization, which leads to
(almost) invariance to changes of scale, for points that are far apart.

4. Modify the 's (visualization points) with gradient descent to minimize the Kullback–Leibler divergence: 

, while recomputing the 's at each step, up to the desired level of precision.

Dimensionality reduction to visualize high-dimensional representations

In a neural network, the input data has its shape changed from a layer to another: a representation is the reshaped
data at a given layer. Since representations are high-dimensional, we can use DR methods to visualize them: it can
prove useful to grasp the inner workings of neural networks, and better understand the data itself.

meta-SNE to visualize the space of representations

By building their matrices of pairwise distances, we vectorize visualized representations (note that representations
that are equal up to isometries (rotations, switching of dimensions, …) give rise to isometric matrices). Then, taking
a step up the ladder of abstraction, we can visualize our vectorized representations with t-SNE: this process is called
meta-SNE.

Regarding neural networks, meta-SNE enables us no longer to confine ourselves to comparing their outcome
only, but to take a step toward comparing how they operate internally.
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