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Static action choice and rewards

We assume that there are two types of flowers:

blue flowers (which we give the index 1)
yellow flowers (with index 2)

The flowers carry nectar rewards  and , and we assume that the bee’s interal estimates for the rewards are 
 and . The bee chooses flowers according to a softmax-policy based on its internal reward estimates,

a). Show that 

It’s a straight-forward calculation:

b). Show that you can rewrite  as 

By divinding the numerator and the denomator of  by  (which

amounts to multiplying both by ), the result follows immediately (under the hood, we also use the
fact that  is a group homomorphism between  and ).

Thus:
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 is a sigmoid of 

c). Plot the formula in b) as a function of the reward difference .
Choose  and choose the range of differences  yourself.

What happens if  gets very large? What happens if  is very small (= negative)?

As  is a sigmoid of :

What does that say about the bee’s choice?

The larger the reward difference , the better the bee estimates the yellow flower (number 2) is
compared to the blue (first) one. As a result, the lower the probability  of the bee landing on the blue
one.

Analogously, the lower the reward difference, the worse the yellow flower (from the bee’s point of vue), and the
greater the probability  of the bee landing on the blue flower.

And in between, the bee’s behavior is a mix between exploiting the most nutritious flower (according to the bee)
and exploring the other one (which is what is expected).

d). Investigate the meaning of the parameter .
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How does  influence the exploitation-exploration tradeoff? What happens if you
increase  and make it very large, e.g ? What happens if you let it go to zero?

The parameter  plays a role analogous to the inverse temperature  in statistical physics. That is, for 

:

For : the bigger the parameter  (corresponding, in physics, to a low temperature/entropy),
the more the bee tends to exploit the most seemingly most nutritious flower. As a result:

when  (i.e. the yellow is avantageous), the probability of the bee landing on the blue
flower rapidly decreases to 
when  (i.e. the blue flower is more advantageous), the probability of the bee landing on
the blue flower rapidly increases to 

For : the lower the parameter  (high temperature/entropy in physics), the more the bee tends to
explore the flowers. Indeed:

as ,  becomes less and less steep, to such a point that it ends up being the
constant function  when  (at this point, the bee does nothing but exploring, since
landing on either of the flowers is equiprobable, no matter how nutritious the bee deems the
flowers to be)

What happens if it becomes negative? Do negative  make any sense?
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The graphs for  are symmetric to those for  with respect to the y-axis, which makes no sense
from a behavioral point of vue: it means that: the most nutritious a flower appears to the bee, the less likely
the bee is to land on it (and conversely)!

e). Imagine that there are  flowers instead of just two. How can you extend
the above action choice strategy to  flowers?

To continue drawing a comparison with statistical physics: in physics, the probability that a system occupies a
microstate  is given by

Where the partition function  is a normalization constant.

Likewise, here, the natural generalization is given by:

where the normalization constant  is equal to

so that the probabilities add to .

Therefore, overall, the action choice strategy can be extended to  flowers as follows:

How can you trade off exploration and exploitation for the -flower case ?

As before (which was a particular case with ), the exploration-exploitation tradeoff depends on the value
of :

the bigger the parameter , the more the bee exploits the flower it currently considers as the most
nutritious
the lower the parameter , the more the bee explores all the flowers

f). Imagine that there are  flowers, yet the rewards on these flowers, 
change as a function of time. How should the bee adapt its internal estimates 

?
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When the time is discrete: we have seen, in class, three ways for the bee to update its internal estimates:

1. The greedy update:

2. The batch update: for :

3. The online update/the delta-rule: for a learning rate :

If the time is now continuous:

By denoting by  the time that elapsed, at time , since the last time (strictly before ) the bee visited the
flower , the analogous continuous-time updates are:

1. The greedy update:

2. The batch update: for , and if

3. The online update/the delta-rule: for a learning rate :

e). Given the learning rules you developed in f), what will happen to the bee’s
internal estimates , if the rewards stay constant for all ?

When it comes to the batch and greedy updates: if the rewards stay constant, so do the internal estimates, as
soon as the bee lands on the corresponding flower.

The situation is trickier for the online update (so we will focus on this update from now on).

As we have seen in class:
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How does that depends on the parameter ?

As the update of  is done whenever the flower  is visited by the bee:

If  is big (exploitation mode): the most nutritious a flower  seems to the bee, the more often the bee
will visit it, and the faster the convergence of  toward 
If  is low (exploration mode): the convergence speed is as independent of the appeal of a flower  as 
is low, since the lower the parameter , the more often the bee explores (leading to the update of the
explored flowers).

What is the characteristic time constant of convergence for the learning rules, i.e.
how fast do the estimates converge to their real values?

For the sake of convenience, let’s assume  is constant. We have

As a result, if :

So for  the characteristic time constant, we have, as in physics:

And finally:

Therefore:

Assuming that  is constant for the flower , the characteristic time constant of convergence
for the online update rule is equal to
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