
MPRI course 2-4
“Programmation fonctionnelle et systèmes de types”

Programming project

Yann Régis-Gianas

2018–2019

1 Summary
The purpose of this programming project is to implement a compiler from the simply-typed λ-calculus
to a categorical language. This technique is applied to automatically differentiate first-order numerical
programs. This project is based on the following papers by Conal Elliott:

• "The Simple Essence of Automatic Differentiation"[3]

• "Compiling to categories"[2]

We strongly advise you to read these papers before you start the project.

2 Required software
To use the sources that we provide, you need OCaml and Menhir. Any reasonably recent version should
do. You also need the OCaml package pprint. If you have installed OCaml via opam, issue the following
command:

opam install menhir pprint

3 Overview of the provided sources
Many components of the project are already provided, including: the definitions of the syntax of terms
for the source and target language; a lexer and parser; a pretty-printer to OCaml programs. Most of the
tasks consist in completing a specific module. In the src/ directory, you will find the following files:

joujou.ml This is the “driver” which orchestrates the application of the compiler passes.

options.ml These are the program parameters and their declarations as command-line options.

source.ml This module contains the definition of the abstract syntax tree of the source language as well
as several utilities to deal with these trees. The source language is a simply typed λ-calculus with
tuples, floating-point literals and numerical primitives.

position.ml This module provides a type for source code locations used in error messages.

1



IO.ml, lexer.mll, parser.mly These modules provide a parser for the source language.

target.ml This module contains the definition of the target language, a language made of categorical
combinators. There are no binder in that language.

oCamlGenerator.ml This module turns a program of the target language into an OCaml program pa-
rameterized by a category.

category.ml Here are the categories to instanciate the OCaml programs generated by the compiler.
This file will be completed during Task 1.

typechecker.ml This module implements a typechecker for the source language.
This file will be completed during Task 2.

compiler.ml This module implements a compiler for the source language to the target language.
This file will be completed during Task 3.

simplifier.ml This is a simplification procedure for programs written in the target language.
This file will be completed during Task 4.

tiny_mlp.j This file implements a very small Multi Layer Perceptron in the source language.
This file will be completed during Task 5.

tiny_mlp_test.ml This module trains the Multi Layer Perceptron to have it learn a simple function.
This file will be completed during Task 5.

Testing For each task, there is a corresponding testsuite in the src/tests/ directory. Running make
from src/tests executes them all.

Advice We strongly recommend that you regularly take checkpoints (that is, snapshots of your work)
so that you can later easily roll back to a previous consistent state in case you run into an unforeseen
problem. Using a versioning tool such as git is highly recommended.

4 Task description
Task 1 As a first task, you must complete category.ml using the definitions found in Conal Eliott’s
papers. This exercise is merely about translating Haskell code into OCaml code. The difficulty here is
to make explicit what is hidden by Haskell overloading, that is, the actual type of operators. Look at the
numerous comments in the file, they should help you.

Task 2 For this second task, you must complete typechecker.ml. You must implement a type-checker
for the source language. You must also define a program transformation to eta-expand all toplevel defini-
tions, since this is a precondition of the compiler. The main difficulty here is the fact that the testsuite for
this task is intentionally small. It is therefore suggested to extend this testsuite with your own tests.

Task 3 This third task requires the completion of compiler.ml. This compiler translates a source pro-
gram into a categorical language using a translation described in the paper “Compiling to categories” [2].
There are two main difficulties here: (i) the translation is not formally defined in the paper (hence, you
will have to figure out what is its actual precise definition before digging into the implementation) ; (ii)
the compiler must construct witnesses for the ok constraints required by the categorical combinators.

2



Task 4 As a fourth task, you will complete simplifier.ml. This module implements some rewriting
rules over compiled programs to try to remove curry and apply combinators. This is needed to actually
differentiate programs because the category of differentiable functions is not closed. There are two main
difficulties in this task: (i) to exhibit the relevant laws to remove curry and apply from compiled pro-
grams ; (ii) to correctly implement the simplification procedure in particular to take the associativity of
composition into account.

Task 5 As a final task, you will apply your differentiator to train a Multi-Layer Perceptron (MLP).
To that end, you will complete tiny_mlp.j which defines a very small MLP from float * float to
float. Then, you will complete tiny_mlp_test.ml to implement the learning procedure for this MLP.
The idea is minimize the error with a gradient descent based on the automatically generated derivative [1].

Optional tasks If you wish to go further and receive extra credit, there are a number of things that you
might do. Here are some suggestions. This list is not sorted and not limiting. Not all suggestions are
easy! Think before attacking an ambitious extension.

• You can try to turn the type-checker into a type inference engine to remove all the type annotations
from programs.

• You can implement the Dual category defined in the paper [3].

• As you will discover during Task 5, the compiled programs generated by our compiler and dif-
ferentiator are extremely slow. By picking ideas from Conal Elliott [3], you can try to optimize
vector representations, variable representation, and more generally the shape of the generated pro-
grams. You can also try to “defunctorize” these programs to reduce the execution cost of modular
abstractions.

In each case, please write a textual explanation of what you did, how you did it, and where to look for
it in your code. Also, propose test files that illustrate what you did.

5 Evaluation
Assignments will be evaluated by a combination of:

• Testing. Your project will be tested with the testsuite that we provide (make sure that “make -C
tests” succeeds!) and with additional tests.

• Reading. We will browse through your source code and evaluate its correctness and elegance.

6 What to turn in
When you are done, please e-mail to François Pottier and Pierre-Évariste Dagand and Yann Régis-Gianas
and Didier Rémy a .tar.gz archive containing:

• All your source files.

• If you implemented “extra credit” features, a README.md file (written in French or English) de-
scribing these additional features, how you implemented them, and where we should look in the
source code to see how they are implemented.

3

mailto:francois.pottier@inria.fr,pierre-evariste.dagand@lip6.fr,yann.regis-gianas@pps.jussieu.fr,didier.remy@inria.fr
mailto:francois.pottier@inria.fr,pierre-evariste.dagand@lip6.fr,yann.regis-gianas@pps.jussieu.fr,didier.remy@inria.fr


7 Deadline
Please turn in your assignment on or before Friday, March 1, 2019.

References
[1] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.

Automatic differentiation in machine learning: a survey. Journal of Machine Learning Research,
18:153:1–153:43, 2017.

[2] Conal Elliott. Compiling to categories. PACMPL, 1(ICFP):27:1–27:27, 2017.

[3] Conal Elliott. The simple essence of automatic differentiation. PACMPL, 2(ICFP):70:1–70:29, 2018.

4

http://jmlr.org/papers/v18/17-468.html
https://doi.org/10.1145/3110271
https://doi.org/10.1145/3236765

	Summary
	Required software
	Overview of the provided sources
	Task description
	Evaluation
	What to turn in
	Deadline

