4. Event Structures as Presheaves

4.1 Presheaves as cocompletion

Let C be a small category and yc its Yoneda embedding. The goal of this section is to show the
following theorem and understand it intuitively:

Theorem 1 — The functor y is the free cocompletion of C.

For every cocomplete category D and functor F' : C — D there is a unique (up to isomorph-
ism) cocontinuous functor ' : C — D making the evident diagram commute up to natural
isomorphism:

F
D
T
F

C

A puzzling question may arise when considering the free cocompletion C:= [C°P, Set] of C:

‘ ‘ What on earth does freely adding all its colimits to C have to do with presheaves? 4.1.1 , ,

4.1.1 Category of elements

A first approach to answer question 4.1.1 would be to investigate what happens when one adds, for
each diagram in C, its formal colimit, up until the resulting category C ends up being cocomplete.

Example 4.1 — Adding a formal coproduct. For example, consider the simplest non-trivial example
of colimit: the coproduct. Suppose that we have two distinguished objects A, B € C and we want
to define their formal coproduct — that will be denoted by € — in the category ! C, so that the
following universal property holds: for every functor F' : C — D such that F'(A4), F(B) have a
coproduct in D, there exists a unique (up to isomorphism) functor ¥ : C — D such that the evident

triangle commutes:

and F'(Q) = F(A) + F(B)

Then, defining 2 € C amounts to describe, for all C' € C, the morphisms:

* going out of €): this one is a cakewalk, we just use the universal property of the coproduct:

Homg (€2, C) := Homc (4,C) x Homc (B, C)

* going into ): By universal property of the coproduct, we do have a map

Homg (C; A) + Homg (C, B) — Homg (C, Q)
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Unfortunately, it may not be bijective at all in general (having a map into the coproduct is
not tantamount to having a map into A and a map into B)! But here’s the thing: if you want
the previous universal property, you're bound to set:

Homg (C, Q) := Homc (C, A) + Homc (C, B)

1C is a full subcategory of C and |C| := |C| U {Q}
Now, coming back to the general case of freely adding (in C) the colimit 2 of any diagram!
D : I — C, we may be tempted to generalise from the previous example by setting, for all C' € C:

Homg (22p,C) := hmHomc (D;, C) and Homg (C,Qp) := CQhIm Homc (C, D;)
T i€l T 1€
enforcing the continuity of yc(C) for all C € C making all C € C small
But this approach is too naive: for instance, the two following diagrams are different (since their
index categories are), but they ought to have the same colimit:

A A A

N A

B B

So we don’t want to add two distinct formal colimits (as we would if we were to add all the Qp for
every diagram D) for them! How is it even possible to keep track of all the diagrams that should
have the same colimit, in such a way that we would add theirs only once? This is where presheaves
come into play! Indeed, each presheaf can be associated to a diagram in C = ycC

Indeed, consider for instance the following diagram in C:= A

B
ot
7
Af\>B

g

To go about adding its colimit P in @ the trick is to rely on the isomorphism C = y¢[C], so as to
see the diagram in yc[C] C [C°P, Set] = C. Now, consider the colimiting cocone with summit P over

the resulting diagram:
( ycB

A = YCB
ycg

As it happens, we are in front of the comma category yc | P. And it turns out that it is iso-
morphic to the category of elements of P:

11 is called the index category of the functor D
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—B.1.7. IfQ € [C°, Set]:
/Q ~ ye 1 Q

As a result, we have an explicit description of P: in the colimiting cocone,

X
* each natural transformation ycX Y% p (where X € {A,B},i € {1,2}) corresponds to an
element z; € P(X) (& P_ &

ych

e for each morphism ycX ycY (where h € {f,g}), Pf(y;) = =

And all the sets {P(C)}cec and the action of P on the C-morphisms are obtained in this way, by
isomorphism with the category of elements of P (which unfolds everything there is to know about P:
its action on sets and morphisms). So, in our example, P is given by:

P(A) :{al,ag} P(B) :{bl,bz} P(C):m
initial map in Set

Pf:{P(B)_MD({l) P :{P(B)HP(,A) Ph:P(C’):(Z)iP(B)
b — aq Vi € {172} b; — a; Vi € {1,2}

So a presheaf has been associated to our original diagram, acting as its colimit. But there is
a catch: everything goes well in the above example, but it might not in general! The highlighted
sentence above Lemma B.1.7 is the fallacy of the argument: for a C-diagram D : I — C whose
colimit is denoted by Pp € C,it may not be the case in general that

Property 4.1.1
%IPD
——
ycD | Pp=ycl Pp

But it can be shown that every diagram D is "equivalent” — in a sense that is made precise
in the appendix B.1.1 - to a diagram D’ that has this property. As such, the freely added colimit
of D in C will be taken to be the presheaf Pp.. Any diagram D : I — C is "equivalent” to

the diagram [(colimycD) Y, C, where U is the evident forgetful functor. Thus, it appears that
U
—C

Pp = colim (/(colim ycD) e, 6) In general:
————
Pp
—_——
=yclP

—B.1.15 - Every preshedf is a canonical colimit of representables. For all P ¢ 6,

P = conm<yc¢Pi>cy—C>6>

A different take on the matter would be through the lens of coends: for every presheaf P < C,
P = [ Pc x ycc (this is referred to as the co-Yoneda lemma, see the appendix B.1.2 for more details).

Kan Extensions

Kan extensions are very expressive universal constructions that enable us to extend functors along
one another. The Kan extension of a functor F' can be thought of as the best approximation of F'
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4.2 Nerve construction %

extending its domain to a larger category. Their ubiquity throughout mathematics led MacLane to
state in [Lan98]:

The notion of Kan extensions subsumes all the other fundamental concepts of category theory.
[p.248]

The approach resorting to Kan extensions will enable us to see the problem at a higher level of
generality, from which Theorem 4.1 will ensue, rather than tackling the issue hands-on.

Definition 4.1.1 — A left Kan extension of a functor ' : C — D along a functor K : C — Cisa
functor Lang (F) : C — D and a natural transformation n : F' — Lang (F') o K (called the unit)
which is an initial arrow from F € [C,D] to — o K : [C,D] — [C, D]

In other words: for any G : C — D and v : F — GK, there exists a unique natural

transformation « : Lang (F) — G such that ag on=1~:
C ﬁF; D
Lan g (F)
7
C

Kan extensions are unique up to unique isomorphism, which is why we commonly use a
definite article (¢he [left Kan extension of F' along K1) to refer to them.

B!

C E D C

>
O ——

N

g

=

E

>
O ——

N

— B.1.11 - Existence of Kan extensions along a functor into a cocomplete category.

Let C be a small category, and K : C — C, F: C — D be functors.
If D is cocomplete, Lany (F) exists and can be defined, for all C € C, as:

Ll%n(F)(C’) := colim (K (e ek D)

On top of that, if F is fully faithful, the natural transformation n: FF — Lang (F) o K is an
isomorphism.

With the machinery of Kan extensions, presheaves being colimits of representables and The-
orem 4.1 are straightforward corollaries of Theorem B.1.11. On top of that, we can express Kan
extensions as coends (Theorem B.1.12), which in turn implies the co-Yoneda lemma (Corollary B.1.13).

Nerve construction: £ — P

In a 2008 article on the n-Category Café titled 'How I Learned to Love the Nerve Construction’, Tom
Leinster said:

The nerve construction is inherent in the theory of categories.

And quite understandably: the nerve construction is an application of the Kan extension appar-
atus which unifies various parts of fields such as (higher) category theory, (higher) homotopy theory,
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algebraic topology, algebraic geometry, ...among others. To quote what Urs Schreiber wrote on the
the corresponding nLab entry:

‘ ‘ Pretty much every notion of category and higher category comes, or should come, with its canonical
notion of simplicial nerve [... ]

And in our case, the nerve construction is precisely what will enable us to see event structures as
presheaves over finite partial orders of events.

Nerve-Readlisation paradigm

The general setting is the following:

Definition 4.2.1 — Nerve-Realisation paradigm
Let F : C — D be a functor from a small category to locally small cocomplete one.

* The left Kan extension of F' along yc (the existence of which is due to Theorem B.1.11) is
referred to as Yoneda extension or the realisation functor of F'

¢ It has a right adjoint Ny := D — Homp (F(—), D) called the nerve of F y £ Lanyf/(F)
C
denoted by Homp (F(=),—) / N
6 F

— B.2.1. With the above notations:

Lan(F') 4 Np = Lan(yc)
yc F

To grasp an intuition for the nerve-realisation paradigm, let’s bring back our Lego blocks example.
You can think of C-objects as being Lego blocks — and thus C-objects as being Lego constructions due
to C being the free cocompletion of C — and D-objects as being real-world physical objects. Then:

¢ the functor F' turns each Lego block into a real-world object (possibly a piece of a bigger object
that would be colimit in D).

* the realisation functor of F' takes a Lego construction and replaces each of its Lego block by
their real-world counterpart given by F’

* the nerve functor of I’ associates to every real-world object the "closest matching” Lego con-
struction for this object, by giving a way to probe the object with every Lego block. Indeed,
Np(d) := ¢ — Homp (F'(c),d) stores all the information with regard to "embedding” each Lego
block c into the real-world object d

For example, our child may happen to have a bust of Newton in his bedroom (the bust being an
object of D in our comparison), and may suddenly feel like making a Lego copy of it, thereby acting
like the nerve:

22
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Newton Bust € D Newton Lego € C

Beyond the Lego analogy, C can really be seen as a category of basic "shapes” on the basis
of which the realisation functor builds and the nerve "approximates” objects of D. So we would
like the nerve to be fully faithful, so that D is equivalent to a full subcategory of C (namely: the
subcategory of presheaves isomorphic to an object of Nz[D] C 6), which would then mean that our
Lego construction mechanism is sufficiently accurate to faithfully capture all the ways to transform
a given real-world object into another one. Another way to see it is that if the nerve is fully faithful,
Np(d) 2 Np(d') <= d = d for all d € D, so we have injectivity on objects "up to isomorphism”, that
is: the category D is embeds into C ”up to isomorphism”.

What about event structures? As mentioned before, we do have a nerve construction in this
setting as well.

Nerve of the inclusion of finite paths into event structures

Recall that the category of paths P is the category of finite posets seen as event structures (called
elementary event structures, path shapes or simply paths) and rigid maps. As a matter of fact:

¢ arigid map can be thought of as extending a path to another one.

* a presheaf A over P corresponds to a gluing of paths (as P is the free cocompletion of P). As A is
a colimit of representables and for all P,Q € P, yp(P)(Q) = Homp (Q, P) describes all the ways
to embed @ into P, it follows that for all P € P, A(P) can be thought of as the set of the states
associated to the path P, that is: all the P-shaped computation paths that can be run by the
process embodied by A.

But all the presheaves over P € P are not relevant: for a given A € ﬁ, there should be only
one computation path of shape (). So we ought to enforce A(()) = 1. That is what leads us to
consider the category of presheaves A € P such that A(0) = 1 (such presheaves are said to be rooted),
denoted by P’. And this category is equivalent to 51, where P, is the category of non-empty paths
(Proposition B.2.2).

I

As in [SW10], the nerve of the inclusion functor P < £ enables us to regard event structures
as presheaves over non-empty paths: but is N7, fully faithful? To answer this, the discussion in
appendix brings us to consider the density of the inclusion functor 7.

Density of non-empty paths P in &
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Definition 4.3.1 A functor F : C — D is said to be dense/codense if every C-object is a canonical
colimit/limit of objects of F[C], i.e. for all C € C,

o= cohm(F¢Cﬂ>ciD> / C = 1im<c¢F£>C£>D)
And we can show, in our case, that the inclusion of P, in £ is indeed dense:

I
— B.3.1. The inclusion functor P, < £ is dense.

Sufficient condition for full- and faithfulness of the nerve

Finally, the fact that the density of a functor implies that its nerve is dense can be obtained as a
corollary of the following theorem:

—B3.2. If F: C — D s a functor, G : C — D a continuous functor and A 4 Ca
co-dense subcategory, there is a unique extension of every natural transformation «i : Fi — Gi to
a natural transformation o : F — G.

Corollary —B.3.3 IfC <i> D is dense, the nerve functor N; is fully faithful.

To reuse the Lego analogy, C being dense in D can be understood as the the Lego bricks being so
small (let’s say of atomic size!) that the Lego constructions are faithful enough to distinguish any two
non-isomorphic real-world objects!

In the end, we straightforwardly deduce, due to the above corollary:

— B.3.4. The nerve functor for the embedding 7, : P, — £ is full and faithful.

Conclusion

On the whole, we first saw that how event structures, an operational model of concurrency, are
related to special kinds of Scott domains: finitary prime algebraic ones. The configurations of an
event structures form a finitary prime algebraic domain, and reciprocally, the set of complete primes
of a finitary prime algebraic domain can be given the structure of an event structure. Prime algebraic
domains are of crucial importance when it comes to dealing with denotational semantics, which
would be the next step.

Second, the concept of free cocompletion was presented, and we sketched some reasons as to why
it stems from presheaves, before hinting at a proof using the machinery of Kan extensions.

Lastly, we saw how Kan extensions are involved in the nerve realisation paradigm, and exhibited
event structures as presheaves over non-empty paths via the nerve construction.

This was nothing but a tiny step toward studying event structures as presheaves: a lot remains to
be done, the long-term objective being to investigate them through the lens of the theory of algebraic
effects.
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B.1 Presheaves as cocompletion

Reminder

Notation B.1. Let C be a locally small category. One denotes

* its category of presheaves by C:= [C°P, Set]
C—C

* jts Yoneda embedding by yc : -
C — Homc (—, C )

BlemmalZi T N

For every presheaf P ¢ 6, there is an isomorphism

natural in C and P

1
Homg (yc(C), P) = P(C)

NB ) The Yoneda lemma, albeit elementary, is fundamental: it is underpinning many categorical
ideas, and will be used extensively thereafter. Emily Riehl even goes as far as to say that:

‘ ‘ The Yoneda lemma is arguably the most important result in category theory, although it
takes some time to explore the depths of the consequences of this simple statement. [Riel6] , y

Vocabulary B.1 A covariant functor F' : C — Set is representable if there exists C € C such
that F' = Homc (C,—). A pair (C, ¢) is called a representation of I' if ¢ : Homc¢ (C,-) — Fis a
natural isomorphism.

Dually, a presheaf P : C°? —; Set is representable if there exists C' € C such that P =2 yc(C),
and a representation of P is a pair (C, ¢) such that ¢ : yc(C) — P is a natural isomorphism.

NB * Representations of functors are unique up to unique isomorphism.

* By the (proof of the) Yoneda lemma, such a natural transformations ¢ are entirely
determined by their value ¢ (id¢) at ide.

Let ' : C — D be a functor.
Vocabulary B.2

* F'is an equivalence if there exists a functor G : D — C such that I[dC = G o F' and
FoG=I1dD.

* [is essentially surjective if for all d € D, there exists ¢ € C such that F(a) = d

F is faithful if for any f,g:a — bin C, F'f = Fgimplies f = g

Fis full if for any a,b € C and g : Fa — Fbin D, there exists f : « — bsuch that Ff = ¢

F is fully faithful if it is full and faithful.
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Theorem B.1.1 If we assume the axiom of choice:

Fis an equivalence <= I is fully faithful and essentially surjective

Definition B.1.1 — The category of elements | P of a presheaf P : C°? —; Set is the category whose
* objects are pairs (C,z), where C € C and = € PC

* morphisms (C,z) — (C,2') are morphisms f : C — C’ in C such that Pf(2') =«

NB * [ P is easily shown to be isomorphic to the coslice « | P, where % € Set is the singleton

* [P is also denoted by [, P: the coend notation alludes to the idea that [ P "un-
folds”/”unpacks” P by taking the union of the P(C)’s, for C' € C, while still remember-
ing how P acts on the set elements via the morphisms of C. This will be made more
precise later.

Vocabulary B.3 — A category is said to be essentially small if it is equivalent to a small one.
Vocabulary B.4 — A functor is co/continuous if it preserves co/limits.
Vocabulary B.5 — An object C of a category C is said to be small if Homc (C, —) is cocontinuous.

Proposition B.1.2 — The Hom functor is continuous in both arguments. If A is an object of a category C
and lim; B;, colim; B; exist in C:

* Homc (4,lim; B;) = lim; Home (4, B;)
* Homc (colim; B., A) = lim; Home (B}, A)

ne ) The functor yc(A) := Home (—, A) is in [C°P, Set], so it does preserve limits, as colimits in C
are limits in C°P.

Definition B.1.2 — A dinatural transformation o : F —*+ G from a functor F : C? x C — D to
G : C°? x C — D is given by a family of arrows (a¢ : F(C,C) — G(C,C))cec such that for
every morphism f : C — (', the following hexagonal diagram commutes:

Vocabulary B.6 — A wedge for G : C°®» x C — D is a dinatural transformation from a constant
functor Ay, for d € D, to G.
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NB * By abuse of notation, a wedge Ay — G may be denoted by d — G or simply referred to
as d.

¢ Similarly to cones, wedges {Ad BANYE. }d b for G and morphisms ¢ : d — d’ making the
€
evident hexagonal diagrams commute form a category.

Definition B.1.3 —The end | G(c,c) € D of afunctor G : C°* x C — D is a terminal wedge for G.

Likewise, for a functor F : C°? x C — D, we have the dual notions of cowedge (dinatural
transformation from F to a constant functor) and coend f °F (¢,c) € D (initial cowedge).

Proposition B.1.3 — Co/continuous functors preserve co/ends. i.e. if ' : C°? x C — D has an end
(resp. coend) and H : D — E is continuous (resp. cocontinuous): H ([, F(c,c)) = [ HF(c,c)
(resp. H ([°F(c,c)) = [“HF(c,c)). In particular, for every d € D, Homp ([ F(c,c),d) =
[ Homp (F(c,c),d) and Homp (d, [, F(c,c)) = [ Homp (d, F(c,c)).

Proposition B.1.4 — Fubini theorem for ends:. If I' : C x C°P x E°P x E is a functor and the ends below
exist, there are canonical isomorphisms:

/ F(c,c,e,e)N//F(c,c,e,e)%//F(c,c,e,e)
(c,€) eJc cJe

Proposition B.1.5 — Natural transformations as Ends. If G : C — D are two functors between
(essentially) small categories:

Hompce (F,G) = /HomD (Fe,Ge)

c

Definition B.1.4 — The tensor (also called copower) in a category C is, provided it exists, a functor

naturally in S, C, C’
Set x C — C +

. {(S ) S8-C such that Homc (,S’ - C, C/) =~ Homget (57 Homc (C, Cl))
’ = :

Dually: a cotensor (also called power) in C is, provided it exists, a functor

naturally in S, C, C’
Set x C — C +

=" {(S ) s O such that Homc (C, C'S) =~ Homget (S, Homc (C’, C”))
,C) —

ng | Every locally small category that has co/products has a co/tensor by setting:

s =1Jc¢ s-c:=]]c

seS seS

In C := Set, we will take the tensor to be the cartesian product, and the cotensor to be the
internal Hom.
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Definition B.1.5 — An initial arrow from an object D € D to a functor ' : C — D is an initial object
in the coslice category D | F, i.e. a pair (C, ¢) where C € C, ¢ : D — F(C) such that for all
C' e Cand f: D — F(C'), there exists a unique C-morphism g : C — C’ such that the
following diagram commutes:

D—*~ F(C) C
!
k @) £L
F(C") c’

Dually, a terminal arrow from F to D is a terminal object in F' | D

/Theorem B.1.6 — Characterisation of adjunctions ((Lan98) IV.1.2. (ii)).
F

_—\
Each adjunction C 1+ D is completely determined by:
o
a

the functor G: D — C
for all C' € C: an object F'(C) € D and an initial arrow n¢ : C — GE(C) from C to G

‘ Then, the functor F is defined by £ on objects and by n¢r o f on arrows f : C — C'. )
A

B.1.1 Category of elements

s N
Lemma B.1.7 If @ € [C°P, Set]:

[a=veiq

AN J

Proof
This a direct corollary of the Yoneda lemma:

/@

Yoneda lemma

; {
(C,x) (¢ 2') = /Q
QC>z <Lf e QC’ yec(C) yc(C')

fo-
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Equivalent diagrams

Every diagram D : [ — C can be shown to be "equivalent” — in a sense that is made precise below —
to a diagram D’ that has the property (4.1.1). As a result, the freely added colimit of D in the free
cocompletion will be taken to be the presheaf Pp.

To get a sense of what is happening, set P to be a representable presheaf yc(C), for C € C. By
the full- and faithfulness of the Yoneda embedding and Lemma B.1.7:

[ye@r=cic

As a matter of fact, in order for D to satisfy the property (4.1.1): for each C' := D; € D[I],
for each C-morphism f : X — C going into C, there should exist exactly one j € I such that
f:Dj — C € Homp(p) (Dy, D;). This can fail in two ways:

(A) either there is no j € I such that f € Homp ) (Dj, D;), as exemplified by the following
diagram D : [ — C:

2

\

where there should be two indices j, ;' such that D; = Dy = B and f € Homc (Dj, D) N
Homc¢ (Dj/, D4) , which is not the case here. To fix this and determine the "equivalent” diagram
D' : I' — C that has the property (4.1.1), one simply adds new objects in I that satisfy what

A g C Di=A g C=D
g
A C=D

B D3 = 4

we want:
D[I] D'[I']
g / g / f !
D =A C =Dy Dy =A C=Dh<'—B=D,
\ \
D3=A C = Dy Dy=A C=Dy~—B=Dj

The presheaf Pp, associated to D’ and D is then given by:

Ppi(A) ={ar,as}  Pp/(B) = {bi, b2}  Pp/(C) = {b1, b2}
P f = {PD/(C’) — Pp/(B) Ppy {PD/(C) — Ppi(A)

c— b; Vi € {1,2} - Cc; — aq Vi € {1,2}

(B) or there are two j # j' € I such that D; = Dj and f € Homp(p) (Dj, D;) "Homp ;) (Dj/, Di):
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for instance, consider the following diagram D : I — C:

DI

g

A f—C Di=A— 7 —=C=D,
\/
h /
Dy = A h

where there should be only one index j such that D; = A and f € Homc¢ (D;, D2), which is

not the case here. To determine the "equivalent” diagram D’ : I’ — C, one "merges” the two
redundant arrows into one:

DI[I] D'[I']
g
9 T
R
Dl_A/fﬂ.C:DQ Di=A f C = Dy

Ds=A

The presheaf P is defined as:

- B - B _ PD/(C)—>PD’(A)
Ppi(A) = {a1} Pp(C) ={c1} Pp f = Ppg= Pph = {Cl — a Vi e {1,2}

* in a way, these two fixes (A) and (B) are operations of rewriting system of diagrams in C,
the normal forms of which are the diagrams satisfying the property (4.1.1).

the two fixes in (A) and (B) are, in a way, reciprocal of each other: intuitively, a colimit
Q (at least in Set) of a diagram (D;);c; can be thought of as being given by an algebraic
structure: the underlying set being the disjoint union Q = | |, D; of the D;’s, and the
identities (equations) over {2 are given by the colimiting cocone conditions, identifying

thereby some elements in 2. Roughly, the (A) and (B) fixes consist in applying the following
transformations:

Applying the (A) and (B) fixes

Before the fix: | Before the fix: After the fix: After the fix:

Q> E D Q> ED

(A) {a} 0 {z,y} {"z=y"}
(B) {z,y} {7z =y"} {z} 0

Density formula/co-Yoneda lemma

A different take on the matter would be through the lens of coends. Indeed, we have the following

expression of presheaves as coends over representables, referred to as the co-Yoneda lemma (or
density formula):
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— co-Yoneda lemmay/density formula.. For every presheaf P : C°? — Set:
(6]
P= / Pc x ycc

This is a particular case of tensor product of functors: if F' € Cand G : C — D where D is
cocomplete:

F®cG:= /CF(C) -G(c)

The tensor product can be understood as follows: let’s picture C-objects as nonshiny Lego blocks,
their corresponding representables as the shiny versions, and D-objects as real-world physical objects.
F, as a colimit of representables, is a shiny Lego construction/gluing. G is to be thought of as turning
each nonshiny Lego block into a real-world D-object. Then, ' ®c G is the real-world gluing where
each shiny Lego block in F has been replaced by the image of the nonshiny corresponding Lego block
by G.

The co-Yoneda lemma expresses the fact that

P = P®cyc
This matches the intuition: replacing each shiny Lego block in P by itself yields P again!

Kan Extensions

— Kan extensions as adjoints. An immediate corollary due to the definition is that
a — ag on yields an isomorphism

natural in G

1
Homp & <L12}n(F), G> = Hompc (F,Go K)

thus (Lang (F'), — g o n) represents the functor Hompc (F,— o K). Besides, by Theorem B.1.6:
if every functor F' € [C, D] has a left Kan extension, then LanK 4 — o K

— Left adjoints preserve left Kan extensions. If L. : D — E is a left adjoint and
the left Kan extension of ' : C — D along K : C — C exists, L preserves Lang(F), i.e. :
(L o Lang (F'), Ln) is the left Kan extension of LF along K. In particular:

Lo Ll%n(F) o L%D(LF)
Proof

Assume we have an adjunction:

Homg (Ld,e) 2 Homp (d, Re) Vd € D,e € E
Then by applying that, for any functor G : C —s E, at every d = Lang (F)(¢) and e = G(&) yields:
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Hompg (L o Lﬁn(F),G) = Homp (Lﬁn(F),RG)

= Homp (F, RGK)
>~ Homp (F, RGK)
>~ Homp (LF, GK)

all of these being natural in G, so L o Lang(F) = Lang(LF) as (Lang(LF),n) represents
Homp (LF,— o K). The unit is obtained by setting G := L o Lang(F') and taking the image of
idzoLang (F) € Homg (L o Lang (F), L o Lang (F)), which yields Ln. [

— Existence of Kan extensions along a functor into a cocomplete category.

Let C be a small category, and K : C — C, F : C —s D be functors.
If D is cocomplete, Lany (F) exists and can be defined, for all C € C, as:

L%n(F)(C) := colim (K (e ek D)

On top of that, if F is fully faithful, the natural transformation n: F' — Lang (F) o K is an
isomorphism.

Proof
The proof is quite technical and involved: it can be found in Theorem B.1.6 (X.3.Th1, p.237). |

— Left Kan extensions as coends. Whenever the tensors and the coend appearing
in the following formula exist, so do Lang (F'), where K € [C, C], F € [C, D], and there are natural
(in K, F) isomorphisms:

L%H(F) = / Homp (K¢, —) - Fe

Proof
We have natural (in G) isomorphisms:

Hom,. ¢ ( [ omp (s, - Fe. G) ~ [ Hous ( [ tomp (e 6>-Fc,G<6>>
~ / / Homp ( / " Homyp, (Kc,é)-Fc,G(é))
~ / / Homp (Homp (Kc,é), Homp (Fe, G(2)))
~ / / Homp (Homp (K¢, &), Homp (Fe, G(@)))
~ / Homy,e (Homp (Ke, ), Homp (Fe,G(-)))

= /HomD (Fe,G(Kc))
= Homp (F,GK)

Thus, as (Lang (F),n) represents Homp (F, — o K), the result follows. [
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Corollary B.1.13 — co-Yoneda Lemmay/density formula. For every presheaf P : C°® — Set over a
small category C:

C
P%/ Pc X ycc

Proof
By definition:

P = Lan(P)
1dC
And as Set is tensored, the coend expression of the Kan extension holds:

C c
pP= If(?(r:l(P) = / Homp (¢, —) x Pc = / Pc x Homp (¢, —)
/]\

commutativity in Set

Similarly, we retrieve the Yoneda lemma from F' = Lanpgc(F'), which may explain the name of
the co-Yoneda lemma.

— The functor y is the free cocompletion of a small category C.

1. The category C := [C°P, Set] is cocomplete.

2. For every cocomplete category D and functor I : C — D there is a unique (up to isomorphism)
cocontinuous functor F' : C — D making the evident diagram commute up to natural

isomorphism:

r D

T

yc

O)<—— O
SR

Proof
1. The colimits can be taken pointwise, as Set is cocomplete:
(colim; P;)(C) := colim; (F;(C))
It is straightforward to check that this is well defined and satisfies the desired property.

2. By Theorem 4.1: as C is small and D is cocomplete, Lany.(F) exists; and as the Yoneda
embedding is fully faithful, we know on top of that that the unit is thereof is an isomorphism.

One can then set F' := Lany (F).
|
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Freeness of the construction: Apart from the analogy with exffnsion of continuous functions
from dense subspaces in topology (since yc[C| is "co-dense” in C, in that every presheaf is a
colimit of representables), one may wonder if this construction being free can be made precise in
a categorical sense: i.e. is the cocompletion functor a left adjoint of a forgetful functor U?

It turns out that exhibiting such a left adjoint is more nettlesome than it may seem at first sight.

Indeed,

¢ if the statement were purely 1-categorical (i.e. if the triangle commuted on the nose and
the Yoneda extension F' were actually unique (not just up to isomorphism)), then one could
think that there is no problem whatsoever, for

- (C,yc) would be an initial arrow from C to U : Cocomp — Cat (i.e. an initial object in
Ac | U) for each category C (where Cocomp is the category of cocomplete categories
with cocontinuous functors)

— which is enough to have an adjunction (cf. Theorem B.1.6:
(-)HU

But we're not even in this situation here, as F is unique up to isomorphism” (i.e. all the

extensions of F' that make the triangle commute up to natural isomorphism are isomorphic).

¢ One may then think that there are two possible workarounds:

- to keep the commutativity and the uniqueness “on the nose”, one may want to work
with specified colimits, by considering the category Cocomp’ of cocomplete categories
equipped with a functor Colim that associates to each diagram (in a given cocomplete
category) a particular colimit. The morphisms thereof would then be the cocontinuous
functors that preserve the chosen colimits.

— or one may settle for a 2-categorical statement: if Cocomp now denotes the 2-category
of cocomplete categories (whose 1-arrows are cocontinuous functors and 2-arrows are
natural transformations), and Cat the 2-category of (small) categories, one may venture
that there is a 2-adjunction

(=)
_—
Cat 1+ Cocomp
N~

But we're up a creek without a paddle anyway, as there is a size issue in any case: if C is
small, then C is not small anymore in general (so the category Cocomp we'’re considering

~

can’t be the category of small cocomplete categories). As a result: U(C) (which should be an
object of Cat) is not a small category either!

Completeness: One may also wonder: <« where do the limits come from (as the presheaf category
is also complete), given that we have only added the free colimits? > Part of the reason why may
be because of the following fact: every cocomplete category that has a small dense subcategory is
complete (the dense subcategory here being the representables). There is a direct and elegant

proof of this, by showing that the limit of a diagram (7;); in C is nothing else than the colimit

of the forgetful functor from the category of cones over (P;); with summit an object of the dense
subcategory.

Corollary B.1.15 — Every preshedf is a canonical colimit of representables For every P € 6, where C
is small:

Proof

cholim<yC¢P£>Cy—c>6>

Upon applying Theorem B.1.14 with D := 6, F := yc, it comes that

Lan(yc) = 1dC
ye
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by uniqueness (up to isomorphism) of F.
Using the colimit expression of the Kan extension stemming from Theorem B.1.11 and taking the
image at P yields the result. n

Nerve construction: £ — P

In a 2008 article on the n-Category Café titled 'How I Learned to Love the Nerve Construction’, Tom
Leinster said:

The nerve construction is inherent in the theory of categories.

And quite understandably: the nerve construction is an application of the Kan extension appar-
atus which unifies various parts of fields such as (higher) category theory, (higher) homotopy theory,
algebraic topology, algebraic geometry, . ..among others. To quote what Urs Schreiber wrote on the
the corresponding nLab entry:

Pretty much every notion of category and higher category comes, or should come, with its canonical
notion of simplicial nerve [...]

And in our case, the nerve construction is precisely what will enable us to see event structures as
presheaves over finite partial orders of events.

Nerve-Readlisation paradigm

Let F' : C — D be a functor from a small category to locally small cocomplete one.

Lan(F') 4 Np = Lan(yc)
yc F

Proof
As D is tensored and cocomplete, one can resort to the coend expression of the left Kan extension (cf.
Theorem B.1.12):

* Lany (F) - Np:

Homp (Lan(F)(P),D) =~ Homp < / ) Homg (yc(c), P) - Fe, D)

yc
C
= Homp </ Pc~Fc,D>

= /HomD (Pc- Fe, D)
c

= /HomSet (Pc,Homp (F'c, D))
C

>~ Homget (P, Homp (F(—), D))

= Np(D)

22

22


https://golem.ph.utexas.edu/category/2008/01/mark_weber_on_nerves_of_catego.html
https://ncatlab.org/nlab/show/nerve+and+realization#NervesOfCategories 
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* Ny = Lanp(yc):
Lan(yc)(d) = / " Homp (F(¢), d) - ye(c)

o /CHomD (F(c),d) xyc(c)
—
:=Np(d)(c)

/ ye(e) x Np(d)(e)

Nr(d) (co-Yoneda lemma)

1%

12

Nerve of the inclusion of finite paths into event structures
Let P be the category of non-empty paths, and P’ be the category of P-presheaves
A with Af) = 1. We have an equivalence of categories P’ ~ P_.

Proof
P is a full subcategory of P, we denote by ¢ : P, — P its fully faithful embedding into P.
By restricting its domain, any presheaf of P’ can be as presheaf over P : we have a functor
PPy
Let’s show that it is essentially surjective and fully faithful, which will be sufficient to get result,
by Theorem B.1.1.

* —o.is essentially surjective: indeed, any presheaf A € ISJ\r can be extended to a presheaf
A’ € P/ such that A’ o . = A by setting:

- A0):=1
- A2 P)=AP) B 1forall PeP

- this extension clearly preserves the new identity idy, and we check that it still preserves
composition:

® forallPLQinP,

A0 PLQ =@ % 1= a4 XY ap) 21— A(f) ;s A1)

|

* and there is no morphism whose codomain is ()
e — o is fully faithful: for all A, B € P’, we clearly have:
Homp, (A:, Bt) = Homg, (A, B)
as any natural transformation ¢ € Homg, (A4, B) cannot but be equal to idy at (), since A(0) =
B(0) = 1.
|
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