Lecture 1: Introduction

Introduction

Regular word languages

%3 finite word automata finite word automata regular word expressions regular word expressions finite word automata--regular word expressions MSO on words MSO on words finite word automata--MSO on words finite monoids finite monoids finite word automata--finite monoids
  • regular expressions: denotational

  • finite automata: operational

  • MSO: logic

  • finite moinoids: algebraic, reason about the infixes of the language

    • {φ:ΣMε1uvwφ(u)φ(v)φ(w)
    • aperiodic monoids ⇔ first order logic

%11 finite tree automata finite tree automata regular tree expressions regular tree expressions finite tree automata--regular tree expressions MSO on trees MSO on trees finite tree automata--MSO on trees finite algebra finite algebra finite tree automata--finite algebra

regular tree expressions, finite algebra: not that easy to manipulate…

Definitions

Tree

A ranked alphabet:

is a pair 𝔉,arity where arity:𝔉

notations:

  • f(n) for f𝔉 with arity n
  • 𝔉n{f𝔉arity(f)=n}, 𝔉n𝔉n

Rooted, ordered, labelled, finite trees

as partial functions:

let 𝔉 be a ranked alphabet. A partial function t:>0𝔉 is a tree iff

  • dom(t) is finite an non-empty

  • dom(t) is prefixed-closed: p,p>0,ppdom(t)pdom(t)

  • labels are consistent with 𝔉: pdom(t),t(p)𝔉n for some n implies {pidom(t)i>0}={p1,,pn}

%19 f^(2) | ε f^(2) | ε g^(1) | 1 g^(1) | 1 f^(2) | ε--g^(1) | 1 g^(1) | 2 g^(1) | 2 f^(2) | ε--g^(1) | 2 a^(0) | 11 a^(0) | 11 g^(1) | 1--a^(0) | 11 b^(0) | 21 b^(0) | 21 g^(1) | 2--b^(0) | 21

notation: T(𝔉) is the set of trees labelled by 𝔉

the subtree of t at pdom(t) is:

t|p, defined by {dom(t|p){pppdom(t)}t|p(p)t(pp)


A non-deterministic finite tree automaton (NFTA) is:

a tuple 𝒜Q,𝔉,Qf,Δ where

  • Q is a finite set of states
  • 𝔉 is a finite ranked alphabet
  • QfQ is a set of final states
  • ΔnQ×𝔉n×Qn
A run of 𝒜 on a tree t is:

a tree in T(Q×) where arity(q,n)n such that

  • domρ=domt
  • pdomρ=domt, if ρ(p)=(q,n) for some q,n then (q,t(p),q1,,qn)Δ s.t. t(p)𝔉n
  • 1in,ρ(pi)=(qi,ni) for some ni

A run ρ is accepting if ρ(ε)Qf

The language of 𝒜 is:
L𝒜{tT(𝔉) accepting run on t}

Example:

  • Q{qf,qg,qa,qb}

  • Qf{qf}

  • 𝔉{f(2),g(1),a(0),b(0)}

  • Δ{(qf,f(2),qg,qg),(qg,g(1),qg),(qg,g(1),qa),(qg,g(1),qb),(qa,a(0)),(qb,b(0))}
%29 q_g1 g^(1) | q_g a^(0) | q_a a^(0) | q_a q_g1--a^(0) | q_a q_g2 g^(1) | q_g b^(0) | q_b b^(0) | q_b q_g2--b^(0) | q_b f^(2) | q_f f^(2) | q_f f^(2) | q_f--q_g1 f^(2) | q_f--q_g2
%39 g1 g b1 g1--b1 g2 g b2 g2--b2 g3 g a or b a or b g3--a or b g4 g a || b a || b g4--a || b b1--g3 b2--g4 f f f--g1 f--g2

Example:

𝔉{,,¬,,} (with obvious arities)

𝒜 s.t. L(𝒜) is the set of Boolean formulae that evaluate to true

  • Q{q0,q1}, Qf{q1}

  • Δ{(q1,),(q0,),(q1,¬,q0),(q0,¬,q1),(q1,,q1,q1),(q0,,q1,q0),(q1,,q1,q1),(q0,,q0,q0),(q1,,q0,q1),(q0,,q1,q0),}

Bottom-up

Inductive definition:

let 𝔉 be a ranked alphabet s.t.

  • a(0)𝔉0 is a tree
  • if t1,,tn are trees and f(n)𝔉n, then f(n)(t1,,tn) is a tree

Let 𝒳 be a countable set of variables 𝒳𝔉=.

We set arity(x)=0,x𝒳.

A tree in T(𝔉𝒳) is called a term and we rather write T(𝔉,𝒳) in that case.

A substitution:

is a function σ:𝒳T(𝔉,𝒳) with {x𝒳σ(x)x} finite

It defines a function T(𝔉,𝒳)T(𝔉,𝒳) by congruence:

  • xσσ(x)
  • f(n)(t1,,tn)σf(n)(t1σ,,tnσ)

thus a(0)σ=a(0)

Example:

if σ:{xa(0)yg(x)

t:

%57 g1 g x x g1--x f f f--g1 y y f--y

tσ:

%65 g1 g a a g1--a g2 g x x g2--x f f f--g1 f--g2
A term tT(𝔉,𝒳) is linear:

if every variable of 𝒳 appears at most once in t

A context:

is a term in T(𝔉,{}) where occurs exactly once.

notation :

  • tσ is an instance of t.
  • a term in T(𝔉,𝒳) with no variables is a ground term.

Example:

t:

%75 g1 g a a g1--a g2 g b b g2--b f f f--g1 f--g2

t=C[t]Cσ where Cσ for σ()=g(b) and

C

%85 g2 g a a g2--a f f f--g2 f--□

and

t

%93 g g b b g--b

notations: C(𝔉) for the set of contexts over 𝔉


A term rewriting system R over T(𝔉,𝒳):

is a set of pairs lr with l,rT(𝔉,𝒳) and vars(r)vars(l), where vars(t){x𝒳pdomt;t(p)=x}

R defines a rewriting relation RT(𝔉)×T(𝔉) by:

  • tRt
  • iff CC(𝔉) and a substitution σ s.t. tC[lσ] and tC[rσ]

Example:

g(x)g(g(x))

t:

%97 g1 g a a g1--a g2 g b b g2--b f f f--g1 f--g2

1) C=f(,g(b)), σ=xa

tR

%107 g1 g g3 g g1--g3 g2 g b b g2--b a a g3--a f f f--g1 f--g2

2) C=f(g(a),), σ=xb

tR

%119 g1 g a a g1--a g2 g g3 g g2--g3 b b g3--b f f f--g1 f--g2

Example 2: It doesn’t work there:

f(x,x)x

t:

%131 g1 g a a g1--a g2 g b b g2--b f f f--g1 f--g2

R

%141 g g a a g--a

where C=, σ:xg(a)

Bottom-up tree automata

Given a NFTA 𝒜Q,𝔉,Qf,Δ, we define the top-down rewrite rules by:

  • f(n)(q1,,qn)𝒜q for all (q,f(n),q1,,qn)Δ and using arity(q)=0 for all qQ

Proposition: L(𝒜){tT(𝔉)qQf;t𝒜q}

Example: when it comes to the previous example related to logical formulas:

q1¬q0(q0,q1)q1

Other view:

arity(q)1 for all qQ

and

f(n)(q1(x1),,qn(xn))𝒜q(f(n)(x1,,xn))

in that view:

L(𝒜){tT(𝔉)qQf;t𝒜q(t)}
a NFTA is complete:

if n,f𝔉n,q1,,qnQ,qQ s.t. (q,f(n),q1,,qn)Δ

NB: If 𝒜 is complete, for all t, there exists a q s.t. t𝒜q

a NFTA is deterministic:

if n,f𝔉n,q1,,qnQ,qQ s.t. |{qQ(q,f(n),q1,,qn)Δ}|1

NB: If 𝒜 is deterministic, for all t, there exists at most one q s.t. t𝒜q

NB: If 𝒜 is complete and deterministic, for all t, there exists a unique q s.t. t𝒜q


Closure properties

As for word automata, one can complete and determinize any NFTA.

Proposition: Given a NTFA 𝒜, we can construct an equivalent complete NTFA 𝒜.

QQ{sink}

We send any missing transition to the sink:

ΔΔ{(sink,f(n),q1,,qn)f𝔉n,q1,,qnQ}

Proposition: Given a NTFA 𝒜, we can construct an equivalent complete and deterministic TFA 𝒜.

t𝒜EE{qQt𝒜q}
  • Q2Q
  • Qf{EQEQf}
  • Δ{(E,f(n),E1,,En)E1,,EnQ and E{qQ(q1,,qn)E1××En;(q,f(n),q1,,qn)Δ}}

Closure properties

Boolean closure quite similar to the word case:

  • Union is disjoint union of tree automata

  • Complementation: determinize, then complement Qf

  • Intersection: product automaton

Top-down tree automata

Given a NFTA 𝒜Q,𝔉,Qf,Δ, we define the bottom-up rewrite rules by:

  • q𝒜f(n)(q1,,qn) for all (q,f(n),q1,,qn)Δ and using arity(q)=0 for all qQ

Proposition: L(𝒜){tT(𝔉)qQf;q𝒜t}


Example:

If the language is {f(a,b),f(b,a)}

then

Δ{(qf,f,q1,q2),(qf,f,q2,q1),(q1,a),(q2,b)}

(chap. 1, 3, 8)

Leave a comment