DM 1 2015/2016

Exercice - 40 - Centrale 2002

Quel est le sous-groupe de $\mathfrak{M}_n(\mathbb{R})$ qu'engendrent les matrices de $\mathrm{GL}_n(\mathbb{R})$?

Solution. On note $(H, +) \stackrel{\text{def}}{=} (\langle \operatorname{GL}_n(\mathbb{R}) \rangle, +)$ le sous-groupe de $(\mathfrak{M}_n(\mathbb{R}), +)$ engendré par les matrices de $\operatorname{GL}_n(\mathbb{R})$.

Montrons que $H = \mathfrak{M}_n(\mathbb{R})$:

- $H \subset \mathfrak{M}_n(\mathbb{R})$ est clair.
- $--\mathfrak{M}_n(\mathbb{R})\subset H$:

En effet: Si

alors, sans perte de généralité $\frac{1}{2}$, si a_1, a_2, \dots, a_r sont nuls et $a_{r+1}, a_{r+2}, \dots, a_n$ sont non nuls :

Exercice - 41 - Centrale 2008

Quel est le sous-espace vectoriel de $\mathfrak{M}_n(\mathbb{R})$ qu'engendrent les matrices nilpotentes?

Solution.

On note $\mathfrak{N}_n(\mathbb{R})$ l'ensemble des matrices de nilpotentes de $\mathfrak{M}_n(\mathbb{R})$, et on pose $A_n \stackrel{\text{déf}}{=} \{M \in \mathfrak{M}_n(\mathbb{R}) \mid \operatorname{Tr}(M) = 0\}$ Montrons que $\langle \mathfrak{N}_n(\mathbb{R}) \rangle = A_n$:

— A_n est un sous-espace vectoriel de $\mathfrak{M}_n(\mathbb{R})$:

En effet:

- $A_n \subset \mathfrak{M}_n(\mathbb{R})$
- $-0 \in A_n \neq \emptyset$
- Pour tous $M, N \in A_n, \forall \alpha \in \mathbb{R} : Tr(\alpha M + N) = \alpha Tr(M) + Tr(N) = 0, d'où : \alpha M + N \in A_n$
- $-\langle \mathfrak{N}_{-}(\mathbb{R}) \rangle \subset A_{-}$:

Comme A_n est un espace vectoriel, il suffira de montrer que $\mathfrak{N}_n(\mathbb{R}) \subset A_n$:

Younesse Kaddar page 1

^{1.} une rédaction plus rigoureuse (mais inutilement lourde) consisterait à noter $a_{i_1}, a_{i_2}, \cdots, a_{i_r}$ les coefficients diagonaux nuls

DM₁ 2015/2016

— Méthode 1 :

Par récurrence sur $n \ge 1$: H(n): " $\forall N \in \mathfrak{N}_n(\mathbb{R}), Tr(N) = 0$ ":

• Initialisation: H(1) est claire, puisque la seule matrice nilpotente de $\mathfrak{M}_1(\mathbb{R})$ est (0).

• Hérédité : Soient $n \in \mathbb{N}$ tel que H(n), $N \in \mathfrak{N}_{n+1}(\mathbb{R})$. On note u l'endomorphisme canoniquement associé à N.

Comme ² N n'est pas inversible, il existe un vecteur non nul $x \in \text{Ker}(u)$.

On complète (x) en une base $B \stackrel{\text{déf}}{=} (x, x_1, \dots, x_n)$ de $\mathfrak{M}_{n+1,1}(\mathbb{R})$, et il existe $L \in \mathfrak{M}_{1,n}(\mathbb{R})$, $\mathrm{N}'\in\mathfrak{M}_n(\mathbb{R})$ telles que :

$$\mathcal{M}(u, \mathbf{B}) = \begin{pmatrix} 0 & \mathbf{L} \\ 0 & \mathbf{N}' \end{pmatrix}$$

Comme $u \in \mathcal{L}(\mathbb{R}^{n+1})$ est nilpotent :

$$0 = (\mathcal{M}(u, \mathbf{B}))^{n+1} = \begin{pmatrix} 0 & \mathbf{L}(\mathbf{N}')^n \\ 0 & (\mathbf{N}')^{n+1} \end{pmatrix}$$

d'où $(N')^{n+1} = 0$, et $N' \in \mathfrak{M}_n(\mathbb{R})$ est nilpotente. Donc

$$\operatorname{Tr}(N') = \operatorname{Tr}(u) = \operatorname{Tr}(\mathcal{M}(u, B)) = 0 + \operatorname{Tr}(N') \stackrel{\text{HR}}{=} 0$$

et H(n+1) est acquis.

— Méthode 2 [Pour les 5/2] : Si $N \in \mathfrak{N}_n(\mathbb{R})$: comme polynôme caractéristique X^n de N est scindé, en trigonalisant N, N est semblable à une matrice triangulaire stricte, d'où Tr(N) = 0.

Donc $\mathfrak{N}_n(\mathbb{R}) \subset A_n$, et, par suite, $\langle \mathfrak{N}_n(\mathbb{R}) \rangle \subset A_n$.

— $A_n \subset \langle \mathfrak{N}_n(\mathbb{R}) \rangle$:

_ - Lemme
Toute matrice de trace nulle est semblable à une matrice de diagonale nulle.

En effet: Par récurrence sur $n \ge 1$: H(n): "Pour toute $M \in A_n$, M est semblable à une matrice de diagonale nulle."

- Initialisation : H(1) est claire.
- Hérédité : Soient $n \in \mathbb{N}$ tel que H(n), $M \in A_{n+1}$. On note u l'endomorphisme canoniquement associé à M.
 - Cas 1 : u est une homothétie de rapport λ .

Alors
$$0 = \text{Tr}(u) = (n+1)\lambda$$
, d'où $\lambda = 0$, et $u = 0$.

— Cas 2 : u est n'est pas une homothétie.

Alors il existe un vecteur non nul x tel que (x, u(x)) soit libre.

On complète (x, u(x)) en une base $B \stackrel{\text{déf}}{=} (x, u(x), x_1, \dots, x_{n-1})$ de $\mathfrak{M}_{n+1,1}(\mathbb{R})$, et il existe $L \in$ $\mathfrak{M}_{1,n}(\mathbb{R}), \, \mathbf{M}' \in \mathfrak{M}_n(\mathbb{R}) \text{ telles que} :$

$$\mathcal{M}(u, \mathbf{B}) = \begin{pmatrix} 0 & \mathbf{L} \\ 1 & & \\ 0 & \mathbf{M}' \\ \vdots \\ 0 & & \end{pmatrix}$$

Donc $0 = \text{Tr}(u) = \text{Tr}(\mathcal{M}(u, B)) = 0 + \text{Tr}(M') = \text{Tr}(M')$, et l'hypothèse de récurrence appliquée à $M' \in A_n$ fournit une matrice $P' \in GL_n(\mathbb{R})$ et une matrice D' à diagonale nulle telles que

$$M' = P'D'(P')^{-1}$$

page 2

^{2.} Sinon il existerait $M \in \mathfrak{M}_{n+1}(\mathbb{R})$ telle que $NM = MN = I_{n+1}$, et 0 = 0 $M^{n+1} = N^{n+1}M^{n+1} = (NM)^{n+1} = I_{n+1}$, ce qui serait

^{3.} par le théorème de la base incomplète

DM 1 2015/2016

Donc en posant
$$P \stackrel{\text{déf}}{=} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & P' & \\ 0 & & & \end{pmatrix}$$
 et $D \stackrel{\text{déf}}{=} \begin{pmatrix} 0 & L \\ 1 & & \\ 0 & D' & \\ \vdots & & \\ 0 & & \end{pmatrix}$,
$$\mathcal{M}(u,B) = PDP^{-1}$$

D'où, en notant Q la matrice de passage de la base canonique à la base B,

$$M = Q \mathcal{M}(u, B) Q^{-1} = (QP) D (P^{-1}Q^{-1}) = (QP) D (QP)^{-1}$$

est semblable à la matrice de diagonale nulle D.

Dans tous les cas, H(n+1) est acquis.

— Soit $M \in A_n$.

D'après le lemme précédent, il existe $P \in GL_n(\mathbb{R})$ et $D \in \mathfrak{M}_n(\mathbb{R})$ à diagonale nulle telles que

$$\mathbf{M} = \mathbf{P} \mathbf{D} \mathbf{P}^{-1}$$

Comme D est à diagonale nulle, D est de la forme $T_- + T_+$, où T_- (resp. T_+) est triangulaire inférieure (resp. supérieure) stricte.

Donc

$$\langle \mathfrak{N}_n(\mathbb{R}) \rangle \ni \mathbf{M} = \underbrace{\mathbf{P}(\mathbf{T}_-)\mathbf{P}^{-1}}_{\in \mathfrak{N}_n(\mathbb{R})} + \underbrace{\mathbf{P}(\mathbf{T}_+)\mathbf{P}^{-1}}_{\in \mathfrak{N}_n(\mathbb{R})}$$

d'où $A_n \subset \langle \mathfrak{N}_n(\mathbb{R}) \rangle$.

Donc

$$\langle \mathfrak{N}_n(\mathbb{R}) \rangle = \{ M \in \mathfrak{M}_n(\mathbb{R}) \mid Tr(M) = 0 \}$$

Younesse Kaddar page 3