TD7 : Probabilités, Loi uniforme, Pile ou face
EX 1
1.
\(𝛺 = ⟦1,6⟧^2 \\ 𝒯 = 𝒫(𝛺)\) par exemple
2.
a).
\[∀𝜔 = (𝜔_1, 𝜔_2)∈𝛺, P(\{𝜔\}) ≝ P(𝜔) = \frac{p_{𝜔_2}}{6}\]Donc
\[P(\text{faire un double}) = \frac 1 6\]b).
Une partitions de l’entier 7 correspond à la donnée d’un couple $(x_1, x_2)$, où $x_1+x_2 = 7$.
Donc
\[P(\text{la somme vaut 7}) = \frac{p_1 + p_2 + ⋯ + p_6}{6} \\ = \frac 1 6\]EX 2
1.
Le somme $s$ la plus probable est, par équirépartition, l’entier $s∈⟦3, 18⟧$ qui a le plus de partitions en trois entiers $∈ ⟦1,6⟧$.
Soit $S$ la variable aléatoire qui à un lacer des trois dés associe sa somme.
Pour tout $k∈⟦3,18⟧$,
\[P(S=k) = \frac{\vert\lbrace \text{partitions de $k$ en trois entiers $∈ ⟦1,6⟧$} \rbrace \vert}{6}\] \[P(S = k) = P(S = 21-k)\]2.
M1 :
\[E(X) = \sum\limits_{1≤i, j, k ≤ 6} \frac{i+j+k}{6^3} = 10,5\]M2 :
\[E(S) = E(X + Y + Z) = 3E(X) = 3 \times \frac 7 2\]EX 3
1.
Non
M1 :
la série génératrice de la somme des deux variables n’est pas un de la forme $𝜆(X + ⋯ + X^{12})$
La série génératrice de $S$ vaut
\[G_S = G_U G_V \\ = \frac{1}{36}(X + ⋯ + X^6)^2\](par le théorème de transfert + produit de Cauchy)
M2 :
$P(U+V=2) = \frac{1}{36}$ ne vaut pas $\frac{1}{11}$
2.
a).
Si $S$ suivait une loi uniforme : on aurait
\[P = G_S = \frac{1}{12}(X^2 + ⋯ + X^{11})\]b).
Produit de Cauchy, car $U$ et $V$ sont indépendantes.
c).
M1 : Analyse
Si on avait $G_S = \frac{1}{12}(X^2 + ⋯ + X^{12}) = G_U G_V$, où $G_U, G_V$ sont des polynômes, en simplifiant par $X^2$, il aurait un polynôme sans racine réelle (à gauche) égal à un polynôme ayant une racine réelle par le TVI (degré 5 impair des deux polynômes (une fois divisés par $X$) en facteur).
M2 : Algèbre
Avec les polynômes cyclotomiques, on ne peut pas avoir ce produit (mais c’est bien plus difficile à démontrer).
EX 4
1.
$P(X_i ∈ S) = \frac{\vert S \vert}{k}$
2.
a).
Soit $z∈⟦1,k⟧$.
\[P(X_1 ≠ z, ⋯, X_n ≠ z) = \Big(\frac{k-1}{k}\Big)^n\]b).
Calculer $P(X_0 ∉ \lbrace X_1, ⋯, X_n\rbrace)$ de deux manières différentes.
M1 :
\[P(X_0 ∉ \lbrace X_1, ⋯, X_n\rbrace) = \sum\limits_{z=1}^k P(X_0 = z, X_1 ≠ z, ⋯, X_n ≠ z) \\ = \sum\limits_{z=1}^k \frac 1 k P(X_1 ≠ z, ⋯, X_n ≠ z) \\ = k \frac 1 k \Big(\frac{k-1}{k}\Big)^n \\ = \Big(\frac{k-1}{k}\Big)^n\]M2 :
\[P(X_0 ∉ \lbrace X_1, ⋯, X_n\rbrace) = \sum\limits_{S ⊆ ⟦1,n⟧} P(\lbrace X_1, ⋯, X_n \rbrace = S, X_0 ∉ S) \\ = \sum\limits_{S ⊆ ⟦1,n⟧} \frac{k - \vert S \vert}{k} \, P(\lbrace X_1, ⋯, X_n \rbrace = S) \\ = \sum\limits_{S ⊆ ⟦1,n⟧} P(\lbrace X_1, ⋯, X_n \rbrace = S) - \sum\limits_{S ⊆ ⟦1,n⟧} \frac{\vert S \vert}{n} \, P(\lbrace X_1, ⋯, X_n \rbrace = S) \\ = 1 - \frac 1 k E(\vert \lbrace X_1, ⋯, X_n \rbrace\vert) \\\]Donc
\[E(\vert \lbrace X_1, ⋯, X_n \rbrace\vert) = k\Bigg(1-\Big(\frac{k-1}{k}\Big)^n\Bigg)\]3.
a).
$E ⟶_{n⟶∞} k$
b).
$E \sim_{k⟶∞} n$
avec un DL de $\exp$ en 0
c).
$E \sim_{k=n⟶∞} n(1 - \frac 1 e)$
avec un DL de $\exp$ en 0
EX 5
1.
\(𝛺 = ⟦1,20⟧^4 \\ 𝒯 = 𝒫(𝛺)\) par exemple
La distribution de proba est uniforme.
2.
Soit $S$ la variable de score.
\[P(S = 0) = \frac{20\times 19 \times 18 \times 17}{20^4}\]3.
\[P(a \text{ apparaît 0 fois}) = (\frac{19}{20})^4\] \[P(a\text{ apparaît exactement 1 fois}) = \frac{4\times 19^3}{20^4}\] \[P(a\text{ apparaît exactement 2 fois}) = \frac{\binom 4 2 \times 19^2}{20^4} = \frac{6 \times 19^2}{20^4}\] \[P(a\text{ apparaît exactement 3 fois}) = \frac{4 \times 19}{20^4}\] \[P(\text{a apparaît exactement 4 fois}) = \frac{1}{20^4}\] \[P(a\text{ apparaît plus de 5 fois}) = 0\]4.
\[P(X_a = 1 ) = \frac{6 \times 20^2}{20^4} + \frac{4 \times 19}{20^4} + \frac{1}{20^4}\] \[P(X_a = 0) = 1 - P(X_a = 1 )\]Donc
\[E(X_a) = \frac{6 \times 20^2 + 4 \times 19 + 1}{20^4} = 𝛾\]De plus :
\[S = \sum\limits_{a=1}^{20} a X_a\]D’où :
\[E(S) = 𝛾 \frac{20\times 21}{2} \\ = \sum\limits_{a=1}^{20} a E(X_a) = \frac{(6 \times 20^2 + 4 \times 19 + 1)\times 21}{2\times 20^3}\]5.
\[P(S=8) = P(X_8 = 1) + P(X_1 =1, X_7 = 1) + P(X_2=1, X_6=1) + P(X_3=1, X_5=1) \\ ≃ 0,013\]6.
Meilleur stratégie : relancer les 2 et 7.
EX 6
1.
digraph {
rankdir= LR;
𝜀 -> 𝜀[label="Q"];
𝜀 -> P_1[label="P"];
P_1 -> P_2[label="P"];
P_1 -> F_1[label="F"];
P_2 -> A[label="F"];
F_1 -> B[label="F"];
P_1 -> 𝜀[label="F"];
P_2 -> 𝜀[label="P"];
F_1 -> 𝜀[label="P"];
}
2.
$𝛺 = \lbrace P, F \rbrace^{(ℕ)}PPF \sqcup \lbrace P, F \rbrace^{(ℕ)}PFF$
La tribu est la tribu des cylindres se finissant par $PPF$ ou $PFF$.
3.
a).
Évident, par construction.
Leave a comment