Lab: Efficient balanced networks
Lecturer: Lyudmila Kushnir
Link of the associated Jupyter notebook
Problem 1
1. Implementation of the integrate-and-fire (IF) neuron
\[\dot{V} = -λ V + F c(t)\]where \(\frac{⟨\dot{C}⟩}{⟨C⟩} << λ\)
\[\begin{align*} & \frac{ ΔV}{ Δt} = -λ V(t) + Fc(t)\\ ⟺ & V(t+Δt) - V(t) = (-λ V(t) + Fc(t)) Δt\\ ⟺ & V(t+Δt) = (1-λ Δt) V(t) + Fc(t)Δt\\ \end{align*}\]
Time-varying signal:
\[\dot{x} = -λx + c\]So that if $c$ varies slowly:
\[0 ≃ \dot{x} = -λx + c ⟹ x ≃ c/λ\]
Leave a comment