Exercises 4: PSPACE-complete problems, Padding
EX 1: Language theory
NFA Universality
- Input: a non-deterministic automaton $𝒜$ over the alphabet $Σ$
- Output: $L(𝒜) = Σ^\ast$
$L(𝒜) = Σ^\ast$?
- $∈ PSPACE = coNPSPACE$: Guess $w$ (letter by letter), return “true” iff $w ∉ L(𝒜)$
But it doesn’t work since $𝒜$ is non-deterministic (you could guess a wrong path): so we have to determinize $𝒜$. But as the determinized automaton is exponential in size (wrt to the size of the original one), so we determinize it on the fly: we compute the subset states into which we’re supposed to go step by step, one after the other (each one of them being of polynomial size ⟶ PSPACE).
PSPACE-hardness
Construct $𝒜$ s.t. (as coPSPACE = PSPACE)
\[w ∉ L(ℳ) ⟺ Σ^\ast = L(𝒜)\]that is:
\[w ∈ L(ℳ) ⟺ Σ^\ast ≠ L(𝒜)\]When is a run of $ℳ$ non-accepting?
- if $q_f ∈ Q \backslash Q_{acc}$
- if a tape extends beyond $p(n)$: $Σ^{p(n)}(Σ\backslash \lbrace # \rbrace)$
- etc…
Bonus: if the automaton is deterministic, it is in $NL$.
NFA Equivalence
- Input: two non-deterministic automata $𝒜_1, 𝒜_2$ over the alphabet $Σ$
- Output: $L(𝒜_1) = L(𝒜_1)$
$∈ PSPACE = coNPSPACE$
Guess $w ∈ L(𝒜_1)$ (letter by letter, guess the path), return “true” iff $w ∉ L(𝒜_2)$ (determinization on the fly)
\[\vert w \vert ≤ 2^{\vert Q_1 \vert + \vert Q_2 \vert}\]PSPACE-hardness
Let $𝒜$ be an automaton.
Let $𝒜_2$ s.t.
\[L(𝒜_2) = Σ^\ast\]To show
\[L(𝒜) = Σ^\ast ⟺ L(𝒜) = L(𝒜_2)\]EX2: Padding
Show that if $P=PSPACE$, then $EXTIME = EXPSPACE$.
Prove that $EXPSPACE ⊆ EXPTIME$ (the other inclusion is trivial).
Let $L_1$ recognized by $ℳ$ running in expspace ($p(2^n)$):
\[L_2 = \lbrace (x, 1^{2^{\vert x \vert}}) \mid x ∈ L_1 \rbrace\]recognized by $ℳ_2$ running in $p(\vert x \vert + 2^{\vert x\vert})$ space
$L_2 ∈ PSPACE = P$ ⟹ $L_2$ recognized by $ℳ_2’$ running in ptime.
We build $ℳ’$, which takes $x$ and
- compute $2^{\vert x\vert}$ and write $(x, 1^{2^{\vert x \vert}})$: exptime
- simulate $ℳ_2’$: ptime($2^{\vert x \vert}$) = exptime
EX 5: Closure under morphism
1.
Given $L∈NP$, and $f: Σ ⟶ Σ$
\[f(L) ∈ NP?\]Let $ℳ$ recognizing $L$
Build $ℳ’$:
- input: $w$
- guess $a_1, ⋯, a_n$ s.t. \(w = f(a_1 ⋯ a_n)\)
- execute $ℳ$ on $a_1 ⋯ a_n$
2.
Assume that $P$ is closed under morphism.
Let’s prove that $SAT ∈ P$.
With a certificate:
\[S ≝ \lbrace (φ, \underbrace{u}_{\text{valuation: } \vert u \vert ≤ \vert φ \vert}) \mid u ⊨ φ \rbrace ∈ P\]Assume $φ$ and $u$ have disjoint alphabets $Σ$ and $Σ’$.
- $f(Σ) = Σ$
- $f(Σ’) = 0$
EX 6: Unary Languages
Assume
\[L ≝ \lbrace 1^n \mid ⋯ \rbrace ∈ NP-complete\]We have
\[SAT ≼_{\bf L} L\]$φ(t)$ with $t∈ \lbrace 0, 1 \rbrace^\ast$ a partial valuation
SAT(φ, t):
if |t| = |φ|:
if φ(t) has no clauses: YES
else: NO
else:
SAT(φ, t0) ∨ SAT(φ, t1)
On SAT(φ, ε)
, $2^{\vert φ \vert}$ calls.
But given $φ$, there exists a logspace reduction $R$ s.t.
\[φ \text{ SAT } ⟺ R(φ) ∈ L\]As $L ∈ NP$:
\[\vert R(φ) \vert ≤ p(\vert φ \vert)\]We use $R$ as a hashtable ⟶ $O(p × p_R)$ space used
Leave a comment