Exercises 11: BPP, ABPP, PP
Proofs to bear in mind
$BPP ⊆ P/poly$ main argument:
\[∀n, ∃r_n, ∀x; \vert x \vert = n; M(x, r_n) \text{ is not wrong}\]$NP ⊆ P/poly ⟹ PH ⊆ P/poly$: see the formulas
Therefore: as $PH ⊆ P/poly$ implies that the polynomial hierarchy collapses, it follows that $NP ⊆ BPP$ is unlikely
\[BPP ⊆ Σ_2 ∩ Π_2\]
-
$BPP ⊆ Σ_2$:
- $x ∈ L ∈ BPP ⟹ ∃t_0, ⋯, t_{m/n}; ∃ r; \bigwedge_i M(x, t_i \oplus r)$
- $x ∈ Σ^\ast$, Derandomization: \(R_x = \lbrace r \mid M(x, r) = \top \rbrace\) If $R_x$ is huge, $∃t_0, ⋯, t_{m/n}$
EX 1: NP and BPP
1.
If $P = NP$, then $PH = P$
Indeed, if $P = NP$, then $coNP = P = NP$, and \(Σ_1 = Π_1 = Π_0 = Σ_0\)
Therefore
\[BPP ⊆ PH ⊆ P\]2.
If $NP ⊆ BPP$, then $AM = MA$
Wrong argument:
$A = BPP, M = NP$ ⟹ if $M ⊆ A$, then
- $MA ⊆ AA ⊆ A$
- $AM ⊆ AA ⊆ A$
⟶ wrong argument, because the A in $A$ (a language) is not the same as the one in $MA$ (a protocol)
digraph {
rankdir=BT;
"ε = P" -> "M = NP", "A = BPP";
"M = NP" -> MA;
"A = BPP" -> "MA" -> "AM"
}
If $NP ⊆ BPP$, then
\[AM = BP\cdot NP ⊆ BP\cdot BPP = BPP = A\]Therefore
\[AM = MA\]EX 2: ABBP: Alternating BPP
We’ve shown that
\[\underbrace{AM ⋯ AM}_{\text{fixed number}} ⊆ AM\] \[ABPP = \underbrace{AM ⋯ AM}_{\text{number depends on the }input}\]\[NP ⊆ AM_{ps}\] \[AM_{ps} ⊆ NP\]
$M’$:
-
input: $x$
- guess $r, y$ of poly size wrt $\vert x \vert$
- execute $y’= A(x,r)$
- accept if $x # r # y’ # y ∈ D$
Proof: $∃M$ s.t.
-
if $x ∈ L$, \(ℙ_r(x \# r \# A(x, r) \# M(\_) ∈ D)\)
There exists $r$ s.t. $ℙ(x # r # A(x,r) # M(_) ∈ D) ≥ 1-\frac 1 {2^l}$
There exists $y ≝ M(_)$ s.t. $ℙ(x # r # A(x,r) # y ∈ D)≥ 1-\frac 1 {2^l}$
So there exists $r, y$ s.t. $M’$ accepts
-
if $x∉L$, $∀M, ℙ_r(x # r # A(x, r) # M(_)∈ D) = 0$
The number of random coins is finite, so:
\[∀M, ∀r, x \# r \# \_ ∉ D\]For $M$ constantly equal to $y$:
\[∀r, x \# r \# A(x, r) \# y ∉ D\]so:
\[∀y, ∀r, \_ ∉ D\]So $M’$ almost accepts
\[x ∈ L ⟺ M' \text{ accepts} \vdots\]EX 3: Polynomial Identity Testing
1.
To represent $X^{2^n}$
digraph {
rankdir=TB;
times2[label="×"];
"x" -> "×", "×";
"×" -> "⋮", "⋮";
"⋮" -> times2, times2;
}
one only needs $n$ nodes.
2.
Given $S ≝ ⟦1, 10 × 2^m⟧⊆ ℤ$
Algorithm:
Draw (x_1, ⋯, x_n)∈S^n at random
Evaluate the circuit C
If C(x_1, ⋯, x_n ≠0):
reject
else:
accept
$C$ is a cicruit associated with polynomial $p$.
If $p=0$:
\[ℙ(p(x_1, ⋯, x_n) = 0) = 1 ⟶ \text{ OK}\]If $p≠0$:
\[ℙ(p(x_1, ⋯, x_n)=0) ≤ \frac{d \vert S \vert^{n-1}}{\vert S \vert^n} = \frac{d}{\vert S \vert} = \frac 1 {10}\]TD 12
EX 1
$PP$:
-
if $x ∈ L$, \(ℙ((x, r)= \top) > \frac 1 2\)
-
if $x ∉ L$, \(ℙ((x, r)= \top) ≤ \frac 1 2\)
NB: if you ask $ℙ((x, r)= \top) ≥ \frac 1 2$ in the first condition, then all problems are recognized (guess randomly).
$PP_{1/2}$:
-
if $x ∈ L$, \(ℙ((x, r)= \top) ≥ \frac 1 2\)
-
if $x ∉ L$, \(ℙ((x, r)= \top) < \frac 1 2\)
Considering a machine whose accepting and rejecting states have been inverted: \(PP_{1/2} = PP\)
and $PP$ is closed under complementation.
Every random machine is has a $PP$ way of accepting.
$NP = RP^\ast$:
-
if $x ∈ L$, \(ℙ((x, r)= \top) > 0\)
-
if $x ∉ L$, \(ℙ((x, r)= \top) = 0\)
Leave a comment