Lecture 8: BPP, P/Poly
Karp-Lipton
Th (Karp-Lipton):
If $NP ⊆ P/poly$, then $PH ⊆ P/poly$
Proof:
We show that $Σ_i^p ⊆ P/poly$ for every $i≥1$ by induction on $i$.
Inductive case: Let $L∈ Σ_{i+1}^p$
\[L = \lbrace x \mid ∃y; \; (x, y) ∈ L' \rbrace, \; L'∈ℳ_i^p ⊆ P/poly \text{ (by i.h. + neg.)}\]There is a family $(w_n)_{n∈ℕ}$ of words of poly size (lists for the family of poly circuits $(𝒞_n)_n$ decide $L’$)
\[L = \lbrace \underbrace{x}_{\text{ size } n} \mid ∃ \underbrace{y}_{\text{ size } p(n)}; \; eval((x,y), w_{n+p(n)+cst}) \; true\rbrace\]AM-Games
- AM (Arthur & Merlin) Games:
-
fixed number of rounds
- A word protocol on $\lbrace A, M \rbrace$:
-
a word $∈ \lbrace A, M \rbrace^\ast$
An AM-game (with a protocol prot):
: is a triple $(𝒜, M, D)$ where
- $𝒜$ is a randomized TM
- $M$ is a function
- $D ∈ P$
$L ∈ BP \cdot 𝒞 ⟺ ∃ L’ ∈ 𝒞$
- if $x∈L, P_r((x,r) ∈ L’) \text{ large } (≥ 1- \frac{1}{2^{q(n)}})$
- if $x∉L, P_r((x,r) ∈ L’) \text{ small } (≤ \frac{1}{2^{q(n)}})$
- $BP \cdot \textbf{P} = \textbf{BPP}$
- $BP \cdot \textbf{NP} = \textbf{AM} = \textbf{AM_{lazy}}$
- $co BP \cdot 𝒞 = BP \cdot (co 𝒞)$
- if $𝒞 ⊆ 𝒞’$, then $BP \cdot 𝒞 = BP \cdot 𝒞’$
Quantifiers
$∃, E$: for $f: \underbrace{X}_{\text{finite}} ⟶ [0, 1]$
- $∃x. f(x) ≝ \max_{x∈X} f(x)$
- $Ex. f(x) ≝ \frac{1}{\vert X \vert} \sum_{x∈X} f(x)$
$prot ∈ \lbrace A, M \rbrace^\ast$
⟶ $\textbf{prot} \text{ i.e. } ∃ L; ∃(A, M, \underbrace{D}_{∈ \textbf{P}})$
-
if $x∈L, P_{r_1, r_2}(x # r_1 # \underbrace{y_1}_{ = M(x # r_1)} # r_2 # y_2 ∈ D) \text{ large } (≥ 1- \frac{1}{2^{q(n)}})$
-
if $x∉L, ∀M’, P_{r_1, r_2}(x # r_1 # \underbrace{y_1}_{ = M’(x # r_1)} # r_2 # y_2 ∈ D) \text{ small } (≤ \frac{1}{2^{q(n)}})$
AMAM ⟶ \(\underbrace{E}_{A} r_1, ∃ y_1, E r_2, ∃ y_2, ⋯\)
Prop: \(L∈ \textbf{AMAM} ⟺ ∀q, ∃D ∈ P;\)
- if $x∈L, P(E r_1, ∃ y_1, E r_2, ∃ y_2. x # r_1 # y_1 # r_2 # y_2 ∈ D) \text{ large } (≥ 1- \frac{1}{2^{q(n)}})$
- if $x∉L, P(E r_1, ∃ y_1, E r_2, ∃ y_2. x # r_1 # y_1 # r_2 # y_2 ∈ D) \text{ small } (≤ \frac{1}{2^{q(n)}})$
Proof: Skolemization trick:
\[E \underbrace{r}_{∈R}. ∃ y. F(r, y) = ∃ f: R ⟶ Y. E r. F(r, f(r))\] digraph {
rankdir=BT;
"ε = P" -> "M = NP", "A = BPP";
"M = NP" -> MA;
"A = BPP" -> "MA" -> "AM"
}
And $\textbf{AM}$ is equal to all the other classes.
To show that, $prot ⊆ AM$ for every prot:
- $prot ≝ Aw$ ⟶ $AAM = AM$
- $prot ≝ Mw$ ⟶ $MAM ⊆ AM$
Goldwasser and Sipser theorem
$Σ = \lbrace 0, 1 \rbrace = \underbrace{𝔽_2}_{\text{field}}$
- $Σ^m$ is a $m$-dimensional vector space over $𝔽_2$
- $h: Σ^m ⟶ Σ^{m’}$ hash function
- A collision for $h$ in $X⊆ Σ^m$:
-
is an $x∈X$ s.t. $∃x’ ∈ X; \; x’≠x ∧ h(x’) = h(x)$
Let \(H ≝ \lbrace h_1, ⋯, h_l: Σ^m ⟶ Σ^{m'} \rbrace\)
- A collision for $H$ in $X⊆ Σ^m$:
-
is an $x∈X$ s.t. $∀j ∈ ⟦1, l⟧, ∃x’_j ∈ X; \; x’_j≠x ∧ h_j(x’_j) = h_j(x)$
- $X$ has a collision for $H$:
-
iff there exists a collision $x∈X$ for $H$ in $X$
Lemma 1 (Sipser): If $\vert X \vert ≤ 2^{m’-1}$, $l ≥ m’$:
\[P_H(X \text{ has a collision in } H) ≤ \frac{1}{2^{l-m'+1}}\]
Lemma 2 (Sipser): If $\vert X \vert > l × 2^{m’}$, then $H$ has a collision in $X$.
\[\underbrace{AM[k]}_{AM ⋯ AM} ⊆ IP[k]\]
Th: (Goldwasser-Sipser): $∀k ≥ 1$,
\[IP[k] ⊆ AM[k+1]\]Corollary:
\(∀k ≥ 1, IP[k] = AM[k] = AM\) because \(IP[k] ⊆ AM[k+1] = AM = AM[k] ⊆ IP[k]\)
$\overline{ISO}$:
-
Input: $G_0 ≝ (V_0, E_0), G_1 ≝ (V_1, E_1)$
-
Question: are $G_0$ and $G_1$ non-isomoprhic?
In $IP[1]$:
-
$A$ draws $b ∈ Σ ≝ \lbrace 0, 1 \rbrace$ at random, $π ∈ 𝔖_n$ at random, then sends $π[G_b]$
-
$M$ answers $b’∈Σ$
-
accept if $b = b’$
Prop: \(\overline{ISO} ∈ AM\)
\[L∈ AM_{tot} ⟺ ∀q \text{ poly}, ∀x, ∃(M, \underbrace{D}_{∈ P})\\ \begin{cases} ℙ_r(x \# r \# M(x \# r) ∈ D) = 1 \text{ if } x∈L \\ ∀ M', ℙ_r(x \# r \# M'(x \# r) ∈ D) ≤ \frac 1 {2^{q(n)}} \text{ else} \end{cases}\]Prop: \(AM = AM_{tot}\)
Let $L ∈ AM = BP \cdot NP$, there is a $L’∈NP$:
- if $x∈L$, $ℙ_r((x,r) ∈ L’) ≥ 1 - \frac 1 n$
- if $x∉L$, $ℙ_r((x,r) ∈ L’) ≤ \frac 1 n$
NB: $L’ = \lbrace (x, r) \mid ∃y, (x, r, y)∈ D’ \rbrace, D’∈P$
Let $R = \lbrace r \mid (x, r)∈L’ \rbrace$ whise gap is $\sim n$
New protocol:
- $A$ draws $H = \lbrace h_1, ⋯, h_l \rbrace$
- $M$ returns $r, r_1, ⋯, r_l, y, y_1, ⋯, y_l$
-
$A$ checks:
- $r∈R: (x,r, y)∈D’$
- $∀j, (x, r_j, y_j)∈D’$
- $∀j, r_j ≠ r, h_j(r_j) = h_j(r)$
So:
- if $x∈L$, Sipser II ⟶ there is a collision ⟹ accept always
- if $x∉L$, $ℙ_r(\text{collision in } R \text{ for } H) ≤ \frac 1 {2^{q(n)}}$
Corollary: \(AM ⊆ Π_2^P\)
Thm: If $ISO$ is $NP$-complete, then $PH$ collapse at level 2.
NB: If $ISO$ is $NP$-complete, then $\overline{ISO}$ is $coNP$-complete, and in $AM$.
Hence $coNP ⊆ AM$, because is closed under polytime reduction.
Leave a comment