Sydney Reading Group: Classifying Category
\[\newcommand\yoneda{ {\bf y}}
\newcommand\oppositeName{ {\rm op}}
\newcommand\opposite[1]{ {#1}^\oppositeName}
\newcommand\id[1][{}]{ {\rm id}_{#1}}
\newcommand\Id[1][{}]{ {\rm Id}_{#1}}
\newcommand\Cat[1]{\mathcal{#1}\/}
\newcommand\Category[1]{ {\mathbf{ #1}}}
\newcommand\Set{\Category{Set}}
\newcommand\tensor{\otimes}
\newcommand\unit{\mathbb I}
\newcommand\carrier[1]{\underline{#1}}
\newcommand\Con[1][]{\mathrm{Con}_{#1}}
\newcommand\ConStar[1][]{\overline{\mathrm{Con}}_{#1}}
\newcommand\dc{\mathop{\downarrow}}
\newcommand\dcp{\mathop{\downarrow^{\mathrm{p}}}}
\newcommand\Dc{\mathop{\Downarrow}}
\newcommand\Dcp{\mathop{\Downarrow^{\mathrm{p}}}}
\newcommand{\Ddc}{\mathop{\require{HTML} \style{display: inline-block; transform: rotate(-90deg)}{\Rrightarrow}}}
\newcommand\CP{\mathfrak{P}}
\newcommand\Conf[1][]{\mathcal C^{\mathrm o}#1}
\newcommand\ConfStar[1][]{\mathcal C#1}
\newcommand\Path{\mathbb{P}}
\newcommand\PathPlus{\mathbb{P}_+}
\newcommand\ES{\mathcal{E}}
\newcommand\PAD{\mathscr{P}}
\newcommand\Comma[2]{#1\downarrow#2}
\newcommand\lub{\bigvee}
\newcommand\glb{\bigwedge}
\newcommand\restrict[1]{\left.\vphantom{\int}\right\lvert_{#1}}
\newcommand\C{\mathbb C}
\newcommand\D{\mathbb D}
\newcommand\wC{\widetilde {\Category C}}
\newcommand\catA{\Category A}
\newcommand\catB{\Category B}
\newcommand\catC{\Category C}
\newcommand\catD{\Category D}
\newcommand\catE{\Category E}
\newcommand\Psh[1]{\widehat{#1}}
\newcommand\PshStar[1]{\widehat{#1}}
\newcommand{\Pfin}{\mathop{ {\mathcal P}_{\rm fin}}\nolimits}
\newcommand\eqdef{:=}
\newcommand\ie{\emph{i.e.~}}
\newcommand\conflict{\mathrel{\sim\joinrel\sim}}
\newcommand\Cocomp{\mathbf{Cocomp}}
\newcommand\const[1]{\Delta_{#1}}
\newcommand\Lan[2]{\mathop{\mathrm{Lan}}_{#1}(#2)}
\newcommand\Ran[2]{\mathop{\mathrm{Ran}}_{#1}(#2)}
\newcommand\Nerve[1]{\mathrm{N}_{#1}}
\newcommand{\dinat}{\stackrel{\bullet}{\longrightarrow}}
\newcommand{\End}[2][c]{\int_{#1} #2(c, c)}
\newcommand{\Coend}[2][c]{\int^{#1} #2(c, c)}
\newcommand{\obj}[1]{\vert #1 \vert}
\newcommand{\elem}[1]{\int #1}
\newcommand{\tens}[2]{#1 \cdot #2}
\newcommand{\cotens}[2]{#2^{#1}}
\newcommand{\Nat}{\mathop{\rm Nat}\nolimits}
\newcommand{\colim}{\mathop{\rm colim}\nolimits}
\newcommand{\cancolimAC}[1]{\big((i/#1)\stackrel{U}{â} \catA \stackrel{i}{â} \catC\big)}
\newcommand{\canlimAC}[1]{\big((#1\backslash i)\stackrel{U}{â} \catA \stackrel{i}{â} \catC\big)}
\newcommand\pair[2]{\left<{#1}, {#2}\right>}
\newcommand\triple[3]{\anglebrackets{ {#1}, {#2}, {#3}}}
\newcommand\anglebrackets[1]{\left<{#1}\right>}
\newcommand\set[1]{\left\{#1\right\}}
\newcommand\suchthat{\middle\vert}
\newcommand\xto\xrightarrow
\newcommand\xfrom\xleftarrow
\newcommand\parent[1]{\left({#1}\right)}
\newcommand\Hom{\mathord{\mathrel{\rm Hom}}}\]
Fix a type theory $𝕋$ (no interesting type formers).
- The classifying category $𝒞(𝕋)$:
-
has as
-
objects: contexts of the form $Φ \; ≝ \; (x_0 ∈ A_0, x_1 ∈ A_1(x_0), … , x_n ∈ An(x_0, …, x_{n-1}))$
-
morphisms are context morphisms $f \; ≝ \; (b_0, …, b_n): Φ ⟶ \underbrace{Ψ}{(y_0 ∈ B_0, …, \, y_n ∈ B_n(y_0, ⋯, y{n-1}))}$ consisting of
\[b_0 ∈ B_0\\
b_1 ∈ B_1(b_0)\\
\vdots\\
b_n ∈ B_n(b_0, ⋯, b_{n-1})\]
Leave a comment