Animation courtsey of Ribosome Studio Youtube channel
Natural selection: Deeper stories $⟹$ Improving biological fitness
BUT counter-intuitive
energetically
probabilistically: Indeed: if
Possible explanations:
Does refinement increase depth?
An heuristic optimisation that loop on two steps:
Model biais: biological clock assumption, spontaneous discrete generation, etc …
Lemma:
$$h ∈ \overbrace{\Hom[\SGph]{x, y}}^{\text{denoted by } [x,y]} \text{ is an epi } \\ \; ⟺ \; ∀ c_y ⊆ y \text{ connected component}, \, h^{-1}(c_y) ≠ ∅$$
Every iso $α ∈ [t, t']$ conjugates the factorisations $ϕ, γ$ and $ϕ', γ'$:
⟹ Equivalence relation:
The group $[t, t]$ acts freely on $[s, t]^e × [t, x]$ (as we have epis and monos), so by Burnside’s lemma:
Theorem: if $s ≤ Σ$ and $x : Σ$:
$$[s,x] \; ≅ \; \sum\limits_{ t ∈ Σ(s) } [s, t]^e ×_{[t,t]} [t, x]$$
edge addition/deletion (when permitted), agent addition/deletion
where
If $θ$ is an iso: $θ(r) \; ≝ \; θ(s), θ(α), τ$ satisfies:
Rule refinement:
If $s ≤ Σ$, the refinement of the rule $R \; ≝ \; s, α, τ$ under $Σ$ is:$$Σ(s, α, τ) \; ≝ \; (t, ϕ(α), τ)_{t ∈ Σ(s), ϕ ∈ [s,t]^e/[t,t]}$$
Our naive code implementation was split between:
https://github.com/yvan-sraka/KaSimir
Demo time!
P. Boutillier, J. Feret, J. Krivine, and W. Fontana, “The Kappa Language
and Kappa Tools,” p. 52.
“Signaling Pathways,” Tocris Bioscience. https://www.tocris.com/signaling-pathways.
V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine, “Rule-Based
Modelling, Symmetries, Refinements,” in Formal Methods in Systems
Biology, vol. 5054, J. Fisher, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 103–122.
E. Murphy, V. Danos, J. Féret, J. Krivine, and R. Harmer, “Rule-Based
Modeling and Model Refinement,” in Elements of Computational Systems
Biology, H. M. Lodhi and S. H. Muggleton, Eds. Hoboken, NJ, USA: John
Wiley & Sons, Inc., 2010, pp. 83–114.
“List of signalling pathways,” Wikipedia. 30-Nov-2016.