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Overview

General context
The discrete distribution monad D[0,1], associating to every set X the set of finitely supported probability
distribution over X, has been shown to be a linear exponential monad by Richard Garner in [Gar18]. Beside
modelling the exponential modality ? of linear logic, linear exponential monads are argued, in this article, to
be a suitable setting for ‘hypernormalisation’, a categorically well-behaved generalisation of normalisation of
subprobability distributions. But the story does not end here: D[0,1] being linear exponential raises a couple
of compelling questions, all more or less oddly related to quantum mechanics/computation and/or quantum
logic – the logic of boolean observables in quantum mechanics –, some of which we have tried to partially
address throughout my internship.

Research problem
On the one hand, what makes D[0,1] a monad is the fact that [0, 1] is an effect monoid, i.e. a monoid in the
category of effect algebras. Effect algebras have been extensively used over the past few years in quantum
mechanical foundations, insofar as orthomodular lattices – an abstraction of the lattice of closed subspaces of
a Hilbert space, representing experimental propositions about quantum observables – as well as the set of
quantum effects – self-adjoint bounded linear operators on a Hilbert space, representing quantum observables
– are special cases thereof. They are mathematical structures that can be thought of as generalising both
probability and propositions. For an arbitrary effect monoid M , the generalised distribution monad DM with
coefficients in M remains a monad, but one may wonder if it remains linear exponential as well.

One the other hand, what makes D[0,1] linear exponential is the fact that (0, 1) is a symmetric tricocycloid
in the symmetric monoidal category (Set,×), as noticed by Garner. Tricocycloids, introduced by Ross Street,
are quantum algebraic objects generalising Hopf algebras (of which quantum groups are special cases) and
satisfying a cohomological 3-cocycle condition. One may wonder how this condition is related to the problem
at hand, and try to generalise the situation to more general instances of tricocycloids.

Last but not least, effectus theory, a new branch of categorical logic developed by Jacobs, Cho and
the Westerbaan brothers, comes in handy when it comes to studying the generalised distribution monad.
Effectuses model continuous, discrete and quantum logic and probability. Their set of scalars happens to
form an effect monoid, and they induce a state-and-effect triangle, which proves to be a valuable point of vue.

Your contribution
We have proved some lemmas relating effect monoids, tricocycloids and effectuses, provided they satisfy
some conditions reminiscent of a form of generalised ‘normalisation’ (of probability subdistributions). Our
notions of effect monoids with normalisation and tricycloids with left/double cancellation are directly related
to Jacobs’ notion of effectus with normalisation, and clarify what happens in the introductory example of
D[0,1]. More precisely, given an effectus with normalisation – such as the Kleisli category of a ‘probability
monad’ like the discrete distribution/continuous Giry/Radon/Kantorovitch ones, to name a few –, its effect
monoid of scalars has normalisation in our sense, and if we remove the scalars 0 and 1 (corresponding to the
two coprojections κ1, κ2), it also forms a symmetric tricocycloid with left/double cancellation. On top of that,
we have shown that

• the categories of effect monoids with normalisation and of symmetric left/double cancellative tricocyc-
loids in Set are isomorphic

• when the effect monoid M has normalisation, the convex spaces over M can be given by binary sums, the
DM -algebras are idempotent commutative monoids for the tensor induced by the tricocycloid associated
to M , and DM is linear exponential
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• we have exhibited the generalised distribution monad DMB over the scalars of an effectus whose objects
are finite coproducts of the terminal object 1 as the monad associated to the Lawvere theory Bop, due to
K`N(DMB) and B being isomorphic. In the general case, we have seen that B can be embedded, under
some conditions, in the category of presheaves over K`N(DMB)op, which gives a natural explanation of
the ‘origin’ of the state functor

• we have sketched some ideas to come up with models of linear logic based on the generalised distribution
monad DM

Arguments supporting its validity
We have implemented the proof of the correspondence between effect monoids with normalisation and
symmetric left/double cancellative tricocycloids in the platform for deductive program verification Why3.
There remains a lot to be done, but hopefully, by bringing the machinery of effectus theory into the picture,
we will able to leverage its power in the future to further investigate the matter and bridge the gap between
linear logic, quantum logic/computation, and the quantum algebraic theory surrounding tricocycloids.

Summary and future work
There remains so much to be done! Whether it be on the linear logic side (models of LL, comparing with
Girard’s quantum coherence spaces, etc...), on the effectus theoretic one (how about bringing other effectus-
theoretic tools into the picture? And what can we tell about other examples of effectuses than the ones we
primarily focused on?), or even on the quantum algebraic one (such as having stronger links with non-abelian
cohomology) and the categorical probability one (what about other probability monads? Now that effectus
theory has paved the way in this direction, to what extent can we generalise the phenomenon?). But by
establishing a link between effect monoids, tricocycloids and effectuses, we now have a track that may prove
valuable to understand how all these fruitful notions are related.
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Non-standard notations will be introduced when used for the first time, but for convenience, a glossary of
notations/abbreviations can be found in appendix A.



1. Introduction

1.1 The discrete distribution monad
This report builds on Richard Garner’s key observation in [Gar18] that the finite/discrete1 distribution monad
DM : Set → Set is linear exponential, where M := [0, 1] ⊆ R and DM is defined – if you read > in the
following as the usual sum in [0, 1] – as:
Definition 1.1 — Discrete distribution monad: DM : Set→ Set over M is given

• on an object X ∈ Set by:

DM (X) :=
{
φ : X →M

∣∣∣ supp(φ) finite and >
x∈X

φ(x) = 1
}

=

{ n∑
i=1

ri |xi〉
∣∣∣ xi ∈ X, ri ∈M,>

i

ri = 1

}
where supp(φ) ⊆ X is the support of φ (set of elements x ∈ X such that φ(x) 6= 0). Such maps φ can be
regarded as formal convex sums

∑
x∈X φ(x) |x〉, where Dirac’s ket notation is nothing but syntactic

sugar drawing a distinction between elements x ∈ domφ and their occurrences in the formal sum. By
convention, in these formal convex sums, r1 |x〉+ r2 |x〉 will be identified with (r1 > r2)x.

• on a morphism f : X → Y by:

DM (f) :=


DM (X) −→ DM (Y )
n∑
i=1

ri |xi〉 7−−→
n∑
i=1

ri |f(xi)〉

The unit ηX : X → DM (X) and multiplication µX : DM 2(X)→ DM (X) of the monad are defined as:

ηX(x) := 1 |x〉 µX

( n∑
i=1

ri |φi〉
)

:=
∑
x∈X

( n

>
i=1

ri · φi(x)
)
|x〉

What is meant by linear exponential is that is that DM “lifts”2 a certain tensor ?(0,1) making (Set, ?(0,1)) a
symmetric monoidal category to a coproduct in the category of DM -algebras. Now, why is it interesting? For
starters, Garner shows that linear exponential monads defined on symmetric monoidal categories (SMC) are
the perfect setting for what Jacobs calls ‘hypernormalisation’ in [Jac17b], viz. a categorically well-behaved
and totally defined generalisation of normalisation of subprobability distributions. But it does not stop here:
quite the contrary, it raises a handful of compelling questions.

1.1.1 What makes DM a monad

First, the only properties of [0, 1] that make DM a monad can be summed up in the fact that it forms an
effect algebra with a multiplication compatible with the addition, called an effect monoid. Effect algebras
have been used since the 1990s [FB94], notably in quantum mechanical foundations, and can be thought of
as merging both probabilities and propositions in one mathematical structure. More precisely, orthomodular
lattices are to quantum logic [Sta15] – the logic of boolean observables in quantum mechanics, inaugurated
by Birkhoff and Von Neumann in [BV36] – what boolean algebras (resp. Heyting algebras) are to classical
logic (resp. intuitionistic logic). And both orthomodular lattices and the set of so-called quantum effects,
i.e. self-adjoint operators (corresponding to observables) on a Hilbert space between 0 and id, are special
cases of effect algebras. Now, a natural question one may ask would be: if we generalise [0, 1] to a general
effect monoid M , resulting in what we will refer to as the generalised distribution monad DM : under
what conditions does DM remain linear exponential?

1we will omit the adjectives ‘finite’/‘discrete’ in the sequel
2in a sense which is made precise in Garner’s article
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1.1.2 What makes DM linear exponential

Secondly, as suggested by the name, linear exponential monads (resp. comonads) are of paramount importance
in linear logic: modelling the exponential modality ? (resp. !), they are one of the three ingredients to have a
model of Classical Linear Logic (CLL) along with a ∗-autonomous category (multiplicative fragment) which
has finite products and coproducts (additive fragment), see for example [De 14; Mel03; Mel; Sch]. As a result,
one may then wonder if DM gives rise to a model of linear logic, for M = [0, 1] or even a general effect monoid.

But closer investigation of Garner’s work in [Gar18] reveals more curious aspects. The reasons that
enabled him to show that D[0,1] is linear exponential are chiefly twofold.

1. On the one hand, the tensor ?(0,1) defined as A ?(0,1) B := A + (0, 1) × A × B + B makes (Set, ?(0,1))
symmetric monoidal owing to (0, 1) = [0, 1]\{0, 1} being a symmetric tricocycloid in the symmetric
monoidal category (SMC) (Set,×), a notion coined by Ross Street in [Str98]. The fact that (0, 1) is a
tricocycloid has a neat geometric interpretation as a transformation of coordinates in the Euclidean
plane, that we will see later. But more generally, in his paper ([Str98, Proposition 2.1.]), Street
shows that, given a tricocycloid H ∈ C in a braided monoidal category (C ,⊗), the tensor product
given by A ?′H B := H ⊗ A ⊗ B endows C with a semi-monoidal structure (i.e. monoidal without
unit). And as pointed out by Garner, provided C has finite coproducts + over which ⊗ distributes,
we can co-universally make (C , ?H) a monoidal category (with the initial object 0 as unit) by setting
A ?H B := A + H ⊗ A ⊗ B + B. However, H being a tricocycloid is not only a sufficient condition, it
becomes necessary as soon as we require the associator of the monoidal structure induced by ?H be
strong in each component, which is a natural condition to ask in the (0, 1) case.
Tricocycloids are quantum algebraic objects generalising Hopf algebras (bialgebras with an antipode,
the typical example thereof being group algebras over a ring), of which quantum groups are particular
examples (for a brief introduction, see [Maj06]). More precisely:

Definition 1.2 A tricocycloid in a symmetric monoidal category (C ,⊗) is an object H ∈ C with an
isomorphism v : H ⊗H → H ⊗H satisfying the so-called 3-cocycle condition: (v ⊗ 1)(1⊗ σ)(v ⊗ 1) =
(1 ⊗ v)(v ⊗ 1)(1 ⊗ v), where σ is the symmetry of the category and 1 the identity morphism (the
subscripts are omitted). A symmetry for a tricocycloid H is an involution γ : H → H such that
(1⊗ γ)v(1⊗ γ) = v(γ ⊗ 1)v. A tricocycloid with a symmetry is called a symmetric tricocycloid.

Beside the fact that the 3-cocycle condition satisfied by a tricocycloid is strikingly reminiscent of the
Yang-Baxter equation (v ⊗ 1)(1⊗ v)(v ⊗ 1) = (1⊗ v)(v ⊗ 1)(1⊗ v) appearing, for instance, in quantum
mechanical many-body problems (see [Jim89]), one may wonder how such an unforeseen cocycle condi-
tion, stemming from non-abelian cohomology (see [Str87]), is related to the problem we are considering.

2. On the other hand, the tensor ?(0,1) was shown to be lifted to a coproduct in the category EM(D[0,1]) of
D[0,1]-algebras due to EM(D[0,1]) being isomorphic to the category Conv[0,1] of (abstract) convex sets over
[0, 1], which enabled Garner to give an explicit description of the coproduct in EM(D[0,1]). But, apart
from the expectation monad – also proved to be linear exponential in Garner’s article – what about
other probability monads, such as the (continuous) Giry/Radon/Kantorovitch monads (described in
[Jac18] for example)? For these, even though their category of algebras can be shown to be bicomplete
(complete and cocomplete) due to their being commutative (see [Jac18; Koc71]), this trick seems hardly
helpful, as it heavily relies on the isomorphism Conv[0,1]

∼= EM(D[0,1]), which looks specific to the monad
D[0,1] at first glance. But it turns out that the Kleisli categories of all these other probability monads
have been shown to be effectuses by Bart Jacobs in [Jac18]. Effectus theory [Cho+15; Jac15] is a
young branch of categorical logic, developed over the past few years by Bart Jacobs, Kenta Cho and Bas
and Abraham Westerbaan, whose objects of study are categorical models – called effectuses – aiming to
capture the fundamentals of discrete, continuous and quantum logic and probability. To some extent, it
can be informally argued that effectus theory is to quantum logic what topos theory is to intuitionistic
logic. In broad terms, an effectus B is a category with a terminal object 1 and finite coproducts + which
satisfies mild pullback assumptions and a joint monicity requirement ensuring that, for all X ∈ B
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• the set MB := HomB (1, 2) of scalars forms an effect monoid (where 2 := 1 + 1)
• the set Stat(X) := HomB (1, X) of states of X forms an abstract convex set over MB

• the set Pred(X) := HomB (X, 2) of predicates over X forms an effect module over MB, i.e. an
effect algebra which is a module over the effect monoid of scalars MB

Typical examples of effectuses are, among others: Set (modelling classical computation and logic), the
opposite categoryC∗C∗C∗PU

op of C∗-algebras and positive unital maps (modelling quantum computation/logic),
but also the Kleisli categories of the aforementioned probability monads, the opposite categories DLDLDLop

of distributive lattices, BABABAop of boolean algebras, and RngRngRngop of rings. In 2019, Octavio Zapata proved
in [Zap] that K`(DM ) is an effectus as well if M is an arbitrary effect monoid. In an effectus B, if
ω : 1→ X is a state and p : X → 2 is a predicate, we can define the scalar ω � p := p ◦ ω : 1→ 2 called
logical validity. Depending on B, such logical validity scalars take various forms (see appendix E.4
and [Jac15] for a more detailed exposition), ranging from membership to a subset when B = Set, to an
expected value when B = K`(D[0,1]) and the trace of ωp when B = C∗C∗C∗PU

op, ω is seen as a density matrix,
p a quantum effect, and X ∈ B is the C∗-algebra of bounded linear operators on a finite-dimensional
Hilbert space H . The last example is an instance of the Born rule [Lan09] in quantum mechanics.
Now, the particularly relevant property of effectuses for the problem we have at hand is that an effectus
B induces what Jacobs calls a state-and-effect triangle (he gives a systematic way to construct such
triangles in [Jac17a]):

(EModEModEMod MB)op

HomEModEModEMod MB
(−,MB)

--

> ConvMB
∼= EM(DMB)

HomConvMB
(−,MB)

ll

BPred := HomB(−, 1+1)

ZZ

Stat := HomB(1,−)

??
(1.1)

where EModEModEMod MB is the category of effect modules over MB and ConvMB , the category of convex sets over
MB, comes into play!
So far, we have teased out two approaches to address the question of whether the considered monads
(e.g. the generalised distribution monad DM , or another probability monad) are linear exponential, that
we may refer to as bottom-up: starting from a tricocycloid in the base category and trying to show that
the induced tensor is lifted to a coproduct in the category of algebras; and top-down: giving an explicit
description of the coproduct in the category of algebras, and trying to see if it comes from a lifted tensor
from the base category. The effectus perspective is promising with respect to the top-down approach,
insofar as it involves the category of convex sets, in which coproducts are more neatly expressed. But
a very natural question arising from this is: how about starting with an effectus B, considering the
generalised distribution monad DMB over its scalars, and then forming the effectus K`(DMB): how do B
and K`(DMB) compare?

1.1.3 Quantum-related notions

Oddly enough, we have come across several notions related to quantum logic/computation/mechanics ori-
ginating from seemingly unrelated considerations: linear logic, due to being the internal logic of symmetric
monoidal closed categories, can be argued to be the proper embodiment of quantum logic (see [Gir03; Pra92]),
effect algebras are central in quantum mechanical foundations, tricocycloids are quantum algebraic objects,
and effectuses are models of quantum logic/computation. More precisely, consider the interval [0, 1]:

1. for D[0,1] to be a monad, [0, 1] is an effect monoid (related to quantum mechanics/logic)
2. for D[0,1] to be linear exponential, (0, 1) is a tricocycloid (related to quantum algebra)
3. K`(D[0,1]) is an effectus (related to quantum logic/computation) whose effect monoid of scalars is [0, 1]

(and EM(D[0,1]) ∼= Conv[0,1] in the state-and-effect triangle of K`(D[0,1]))

How do these 3 notions relate?



2. Effect Monoids vs. Tricocycloids

The goal of this section is to draw a link between effect monoids – which carry the structure required on
[0, 1] to make D[0,1] a monad – and tricocycloids in Set – which underlie the reason why (Set, ?(0,1)) can be
endowed with a symmetric monoidal structure rendering D[0,1] : (Set, ?(0,1))→ EM(DM ) linear exponential.
It turns out that one can come up with suitable conditions to impose on our effect monoids and tricocycloids
in Set to go from one to the other, namely that the effect monoids have normalisation, and the tricocycloids
be left and double cancellative. As it happens, imposing these extra-requirements results in an isomorphism
of categories. The proofs will rarely be provided for lack of space, but they can be found in appendix D.

2.1 Effect monoids with normalisation

2.1.1 Effect algebras

As previously mentioned, effect algebras play a key role in quantum mechanical foundations and quantum
logic, see [FB94; Kup; Sta15; Wil17], generalising both the structure of boolean quantum observables
and quantum effects. The archetype of an effect algebra is the interval [0, 1], which can be thought of
as a commutative monoid where + is partially defined – a, b ∈ [0, 1] can be summed iff a + b ∈ [0, 1], and
when it happens, they are called orthogonal – and where there is an element 1 enabling us to define an
orthocomplement a⊥ := 1 − a for every a ∈ [0, 1], that can be understood as the “maximally orthogonal”
(i.e. there is no other greater orthogonal element) to a.

Definition 2.1 — A partial commutative monoid (PCM) is a set M equipped with a zero element 0 ∈ M
and a partial binary sum operation > : M ×M ⇀M which is associative (∀x, y, z. (x> y) > z = x> (y > z)),
commutative (∀x, y. x> y = y > x), and satisfies the unit law (∀x. 0 > x = x).

NB With the following abuse of notation in equations involving >: the left-hand side is defined iff the right-hand
side is, and when it happens, they are equal (Kleene equality).

In a PCM, x1, . . . , xn ∈ M are said to be orthogonal if
n

>
i=1

xi is defined. Two elements x, y ∈ M being

orthogonal is denoted by x⊥ y. A morphism of PCMs is a function between the underlying sets preserving >.
PCM and their morphisms form a category PCMPCMPCM .

Definition 2.2 — An effect algebra is a PCM E with an orthocomplement function (−)⊥ : E → E such that: 0
is the unique element orthogonal to 1 := 0⊥ and for all x ∈ E, x⊥ is the unique element (orthocomplement)
satisfying x> x⊥ = 1.

NB An effect algebra carries a poset structure by setting x ≤ y ⇐⇒ ∃z; x> z = y. A partial difference can also be
given by y 	 x = z ⇐⇒ x> z = y.

Effect algebras and functions between the underlying sets preserving > and 1 yield a subcategory EAEAEA of PCMPCMPCM .
Effect algebras can be thought of as generalising probabilities and propositions.

Example 2.1 — Non-examples and examples of effect algebras
By abuse of notation, in the following examples, one denotes in the same way the sum operations and
their restriction to the subdomain of couples of orthogonal elements. To further illustrate the idea, we give
examples of PCMs that are not effect algebras in appendix B.

• The one-element and two-elements sets are, respectively, the terminal and initial objects of EAEAEA
• Interval effect algebras:

– the ultimate example of an effect algebra is the interval [0, r] ⊆ R, for r ∈ R (r = 1 will play a key
role later), with x⊥ y ⇐⇒ x+ y ≤ r, > := +, (−)⊥ := r − (−)
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– similarly, the bounded linear operators U : H →H on a Hilbert space H that are positive and
below the identity (called effects, whence the name “effect algebra”) form an effect algebra too

• Orthomodular lattices: an ortholattice L is a bounded (with least element 0 and greatest element
1) lattice (poset where every two x, y ∈ L have a greatest lower bound x ∧ y and least upper bound
x ∨ y) equipped a complementation (−)⊥ (x ∨ x⊥ = 1 and x ∧ x⊥ = 0) which is involutive (x⊥⊥ = x) and
order-reversing (x ≤ y =⇒ y⊥ ≤ x⊥). An orthomodular lattice is an otholattice where the modular
law holds: x ≤ y =⇒ y = x ∨ (x⊥ ∧ y). With x⊥ y ⇐⇒ x ≤ y⊥, > := ∨, orthomodular lattices are effect
algebras. Special cases of orthomodular lattices of particular importance are:

– Boolean algebras (distributive orthomodular lattices), e.g. the boolean algebra of measurable
subsets of a measure space (where U ⊥V ⇐⇒ U ∩ V = ∅ and > = ∪). Note, as it happens, that a
probability measure µ : Σ→ [0, 1] is nothing but a morphism of effect algebras. The category BABABA of
boolean algebras is a full subcategory of EAEAEA (see [Jac15, Lemma 2.3.]).

– The lattice of closed subspaces of a Hilbert space, which is of paramount significance in quantum
logic. In their seminal paper [BV36], Birkhoff and von Neumann gave birth to quantum logic by
pointing out that the closed subspaces of a Hilbert space, which form an orhomodular lattice, can
be thought of as representing quantum “experimental propositions”a about physical observables.
What is meant by that is that such quantum propositions are semantically interpretedb by closed
subspaces of the phase-space of the considered quantum system, which is a Hilbert space, in von
Neumann’s mathematical foundations of quantum mechanics [NW18].

asubsets of the observation-space, the space of the readings from measurements of a given physical (viz. quantum) system
bto use an anachronistic computer science/logic terminology, which wasn’t used by von Neumann

2.1.2 Effect monoids and modules

In [JM12], Jacobs and Mandemaker proved that EAEAEA is bicomplete and symmetric monoidal, where morphisms
f ∈ HomEAEAEA (E1, E2) correspond to bihomomorphisms f̃ : E1 × E2 → D, i.e. functions between the underlying
sets which are homomorphisms of PCMs separately in each coordinate, and such that f̃(1, 1) = 1. The tensor
unit is the initial object (the two-elements effect algebra). An effect monoid is a monoid in the category
EAEAEA, i.e. an effect algebra M ∈ EAEAEA equipped with an associative multiplication · : M ×M →M distributing
over the partial sum > and having 1 ∈ M as neutral element. In a standard way, effect monoids form a
subcategory EMonEMonEMon of EAEAEA. For an effect monoid M ∈ EMonEMonEMon , it is well-known (see [nLab]) that the endofunctor
M ⊗ (−) : EAEAEA → EAEAEA is a monad. The category EModEModEMod M of effect modules over M is the category EM(M ⊗ (−))
of algebras of this monad; that is, the category of actions of the monoid M . An effect module over M can
be more concretely described as an effect algebra E endowed with a scalar multiplication · : M ⊗ E → E
preserving 0 and > in each coordinate and satisfying 1 · e = e and r · (s · e) = (r · s) · e.

Let M be an effect monoid.

Proposition — D.1 For all a, b ∈M , a⊥b⊥ = (a> a⊥b)⊥ = (b> ab⊥)⊥

M will be said to have normalisation iff ∀a 6= 1, b ∈ M.a⊥ b =⇒ ∃!c; b = a⊥c. This notion brings us closer
to tricocycloids, since, as previously mentioned, (0, 1) being a tricocycloid leads the induced tensor to be
lifted to a coproduct in the category of D[0,1]-algebras, which is to be construed as a suitable setting for a
generalisation of normalisation of subprobabilities [Gar18].

Corollary — D.1 If M has normalisation, M is left-cancellative away from zero, i.e.

∀a 6= 0, b, b′ ∈M. ab = ab′ =⇒ b = b′

Proposition — D.2 If M has normalisation, then for all a> b1 > · · ·> bn = 1 with a 6= 1, there exist unique
c1 > · · ·> cn = 1 such that ∀i. bi = a⊥ci
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2.2 Tricocycloids in Set

Recall the general definition 1.2 of a tricocycloid in a braided monoidal category. A lax tricocycloid is
defined like a tricocycloid, except that v is no longer required to be invertible. We have the following
characterisation:

Lemma — D.2. Let (H, v, γ) be a lax tricocycloid with a symmetry. It is a tricocycloid iff v(γ⊗γ)v(γ⊗γ) = 1,
in which case v−1 = (γ ⊗ γ)v(γ ⊗ γ).

From the definition 1.2, we can read off, when this category is (Set,×) (which we will assume from now
on unless specified otherwise):

Definition 2.3
A (lax) tricocycloid in (Set,×) is given by a set
H and a (bijective) function

v :

{
H ×H −→ H ×H
(r, s) 7−−→ (r · s, r � s)

satisfying:

(i) Associativity: · is associative
(ii) 3-cocycle 1: (r � st)(s � t) = rs � t

(iii) 3-cocycle 2: (r � st) � (s � t) = r � s

A symmetry for a tricocycloid H ∈ Set is an

involution γ :

{
H −→ H

r 7−−→ r⊥
such that:

(iv) Symmetry 1: r · s⊥ = (r · s)⊥(r � s)
(v) Symmetry 2: (r � s⊥)⊥ = (r · s)⊥ � (r � s)

NB We write · as juxtaposition, and allow it to bind more tightly than �.

Example 2.2 — The open interval (0, 1).

The prime example of a symmetric tricocycloid in Set is the open interval (0, 1),
as shown by Garner in [Gar18], for which r · s := rs, r � s := rs∗

(rs)∗ where
(−)? := 1− (−), and γ := (−)?. The fact that it is a symmetric tricocycloid has a
neat geometric interpretation as a transformation of coordinates in the Euclidean
plane: v(r, s) = (r · s, r � s) turns, in Conv[0,1]

∼= EM(D[0,1]), the formal convex
combination

r
(
s |A〉+ s∗ |B〉

)
+ r∗ |C〉

into the convex combination

rs |A〉+ (rs)∗
( rs∗

(rs)∗
|B〉+

r∗

(rs)∗
|C〉

)
= r · s |A〉+ (r · s)⊥

(
(r � s) |B〉+ (r � s)⊥ |C〉

)

r r*

 s  s*

v

rs   (rs)*

rs*/(rs)* r*/(rs*)

This can be shown geometrically (cf. appendix H for a detailed proof): in the following drawing, where
ABC is equilateral (each side may be thought of as a copy of H = (0, 1)), v sends (r, s) to (x, y):

D

 A

E

r*⋅DC

x ⋅ AE

s

       B C

s*

r⋅DC

y

(0,1)

Geometric interpretation
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The following lemma is a useful adjunct to D.2, giving another equivalent condition for a lax tricocycloid
to be a tricocycloid, provided it is in Set.

Lemma 2.1 Let (H, v, γ) be a lax tricocycloid with symmetry in Set. It is a tricocycloid iff we have

(vi) Symmetry 1 orthogonal: (rs)⊥(r � s)⊥ = r⊥ (vii) Symmetry 2 orthogonal: (rs)⊥ � (r � s)⊥ = s⊥

Proof
We have that: (r, s)

v
7−−→ (rs, r � s)

γ⊗ γ
7−−→

(
(r · s)⊥, (r � s)⊥

) v
7−−→

(
(rs)⊥(r � s)⊥, (rs)⊥ � (r � s)⊥

)
. So these equations

hold iff ∀r, s. (v(γ ⊗ γ)v)((r, s)) = (γ ⊗ γ)((r, s)), that is: v is invertible by Lemma D.2. �

A tricocycloid will be said to be left-cancellative if ∀r, s, s′. rs = rs′ =⇒ s = s′ and satisfying the
double cancellation property/be double cancellative if ∀r, s, r′, s′. rs = s′r′ and rs⊥ = (s′)⊥r′ =⇒ r = r′. A
tricocycloid where both of these laws hold will be called left/double cancellative.

We will now go about proving the fact that the categories EMonNormEMonNormEMonNorm of effect monoids with normalisation
and TricoCancTricoCancTricoCanc of symmetric double/left cancellative tricocycloids are isomorphic, thereby answering some of
our introductory questions.

2.3 From a tricocycloid to an effect monoid
This direction is the trickiest one, but it is the one that elucidates the constraints we need to impose on our
tricocycloids to have a correspondence with effect monoids.

Lemma — D.3. In a symmetric tricocycloid H ∈ Set, for all r, s, t, d, d′ ∈ H, we have:

(vi) (rs)⊥(r � s)⊥ = r⊥

(vii) (rs)⊥ � (r � s)⊥ = s⊥
(viii) (r � st)(s � t)⊥ = (rs � t)⊥(r � s)

(ix) (r�st)�(s�t)⊥ = ((rs�t)⊥�(r�s))⊥
(x) ((s⊥ �d′)⊥d)⊥ = ((sd)⊥ � (s�d)⊥d′)⊥

(xi) ((s⊥ � d′)⊥ � d)⊥ = (s � d)⊥ � d′

The previous lemma enables us to prove the following corollary and proposition, which will be key in
showing right distributivity of the effect monoid constructed out of a given symmetric left/double cancellative
tricocycloid.

Corollary — D.4 In a symmetric tricocycloid, for all s, d:

(s⊥d)⊥((s⊥ � d)⊥d)⊥ = (sd)⊥((s � d)⊥d)⊥

Proposition — D.3 In a symmetric tricocycloid where the double cancellation property holds:

∀d, s. d⊥ = (sd)⊥((s � d)⊥d)⊥

Let H ∈ Set be a symmetric left-cancellative tricocycloid satisfying the double cancellation property, and
define M := H := H ∪ {0, 1}, where 0 and 1 are two extra elements, and ·, � : H ×H → H, (−)⊥ : H → H
are extended to partial functions on H := H ∪ {0, 1} as follows, for all x ∈ H:

1 · x = x · 1 = x

0 · x = x · 0 = 0

1 � x = 1 if x 6= 1, else not defined

x � 1 = 0 0⊥ = 1

0 � x = 0

x � 0 = x

We also put a⊥ b def⇐⇒ ∃r, s.

{
a = rs

b = rs⊥
and

= rs︷︸︸︷
a ⊥

= rs⊥︷︸︸︷
b =⇒ a + b := r. Note that this (r, s) couple is
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unique by injectivity of v, since:

{
rs = r′s′

rs⊥︸︷︷︸
(rs)⊥(r�s)

= r′(s′)⊥︸ ︷︷ ︸
(r′s′)⊥(r′�s′)

left cancellativity
↓

=⇒

{
rs = r′s′

(r � s) = (r′ � s′)

NB If we put 1 � 1 = 0 (it’s either this or 1, to comply with at least one of the conflicting equations we have), H ∪ {0, 1}
is a lax tricocycloid, and Street’s construction ([Str98, Proposition 2.1.]) leads to a lax semi-monoidal category.
The same holds, more generally, for every effect monoid M .

Theorem 2.2 — From a tricocycloid to an effect monoid. Every symmetric left-cancellative tricocycloid
H satisfying the double cancellation property gives rises to an effect monoid H := H ∪ {0, 1} having
normalisation, with the operations/relations defined above. �

Proof
We give a sketch of the proof. It has been implemented in details in Why3 (cf. appendix I.1 and the dedicated
GitHub repository).

• PCM structure: the commutativity of + stems from (−)⊥ being involutive (if (r, s) makes (a, b) ortho-
gonal, (r, s⊥) do the same for (b, a)), and the unit law for a⊥ 0 clearly holds with r = a, s = 1. The asso-
ciativity deserves to be expounded on a bit more: if rs = a⊥ b = rs⊥ and r′s′ = a+ b⊥ c = r′(s′)⊥, then

a = r′(s′s) b = r′s′s⊥
(iv)
= r′(s′s)⊥(s′ � s) c = r′(s′)⊥

(vi)
= r′(s′s)⊥(s′ � s)⊥

Therefore b⊥ c, b+ c := r′(s′s)⊥⊥ r′(s′s) = a, and a+ (b+ c) := r′ = (a+ b) + c.
• Effect algebra structure: Existence of the orthocomplement is easily shown, and 0 is the unique

orthocomplement of 1 (since 1 = rs =⇒ r = 1 and s = 1, so rs⊥ = r · 0 = 0). As for uniqueness of the
orthocomplement: if x = rs = r′s′ and y = rs⊥ and y′ = r′(s′)⊥ with r = x + y = 1 = x + y′ = r′, then
s = x = s′, whence y = y′.

• Effect monoid structure: · is associative, preserves 0 in both variables and satisfies the unit laws by
construction. Left distributivity is easily shown, by uniqueness of (r, s) in the definition of orthogonality.
Right distributivity is more nettlesome: let rs = a⊥ b = rs⊥ and d ∈ H. Then ad⊥ bd because

ad = rsd
(vi)
= r((s⊥d)⊥(s⊥ � d)⊥)d = r(s⊥d)⊥((s⊥ � d)⊥d)

(iv)
= r((s⊥d)⊥((s⊥ � d)⊥d)⊥)⊥((s⊥d)⊥ � ((s⊥ � d)⊥d)⊥)

Corollary D.4
= r ((sd)⊥((s � d)⊥d)⊥)⊥︸ ︷︷ ︸

Proposition D.3
= d

((s⊥d)⊥ � ((s⊥ � d)⊥d)⊥)︸ ︷︷ ︸
denoted by x

and

bd = rs⊥d
(vi)
= r ((s⊥d)⊥((s⊥ � d)⊥d)⊥)⊥︸ ︷︷ ︸

Corollary D.4
= d

((s⊥d)⊥ � ((s⊥ � d)⊥d)⊥)⊥︸ ︷︷ ︸
x⊥

and consequently: ad+ bd = rd = (a+ b)d

• Normalisation: if 1 6= rs = a⊥ b = rs⊥, then (r, s) 6= (1, 1), and b
(iv)
= a⊥(r � s), uniqueness stemming

from left-cancellativity.

�

2.4 From an effect monoid to a tricocycloid
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Lemma — D.5. Let H be a set equipped with a function v : H × H → H × H, (r, s) 7→ (r · s, r � s) and an
involution γ : H → H, r 7→ r⊥. Suppose that · is left cancellative. Then H is a symmetric tricocycloid iff · is
associative and the axioms Symmetry 1 and Symmetry 1 orthogonal hold.

Theorem 2.3 — From an effect monoid to a tricocycloid. Every effect monoid M with normalisation can
be turned into a symmetric left/double cancellative tricocycloid M̊ := M\{0, 1}. �

Proof
Let M be an effect monoid with normalisation, and set H := M̊ := M\{0, 1}. For any r, s ∈ H we have
rs⊥ rs⊥, so we can define r � s as being the unique (by Corollary D.1) z such that (rs)⊥z = rs⊥. On top of that,
in H, we define · to be the restricted multiplication, and the symmetry γ := (−)⊥. As H is left-cancellative
by Corollary D.1, it suffices to check that · is associative (which is immediate), and that the axioms Symmetry
1 and Symmetry 1 orthogonal hold. Symmetry 1 holds by definition of �. As for Symmetry 1 orthogonal, we
get from Proposition D.1 that

(rs)⊥(r � s)⊥ = (rs> (rs)⊥(r � s))⊥ = (rs> rs⊥)⊥ = r⊥

as desired. The tricocycloid being left/double cancellative straightforwardly follows from Corollary D.1 and
distributivity of · over >. �

2.5 Isomorphism of categories
Theorem 2.2 and Theorem 2.3 now yield the desired result, viz. the categories of effect monoids with
normalisation and of symmetric tricocycloids in Set that have left and double cancellation are isomorphic.

Let EMonNormEMonNormEMonNorm be the category of effect monoids with normalisation and maps of effect algebras preserving
multiplication, TricoCancTricoCancTricoCanc be the category of symmetric left/double-cancellative tricocycloids in Set and functions
commuting with γ and v.

Theorem — D.6. EMonNormEMonNormEMonNorm ∼= TricoCancTricoCancTricoCanc

We will now bring effectuses into the picture, as discussed in the introduction. First, note that we will
resort to the following maps notations in the sequel (all of these are recapped in appendix A).

:= [[κ1, κ2κ1], κ2κ2] : (X + Y ) + Z → X + (Y + Z)

:=
−1

: X + (Y + Z)→ (X + Y ) + Z

:= [[κ1, κ2], κ2] : (X + Y ) + Y → X + Y

:= [[κ2, κ1], κ2] : (X + Y ) +X → Y +X

:= (X + Y ) + Z −→ X + (Y + Z) −→ (Y + Z) +X

:=
−1

: (Y + Z) +X → (X + Y ) + Z

:= [κ2, κ1] : X + Y → Y +X

:= [[κ1, κ3], κ2] : (X + Y ) + Z → (X + Y ) + Z

:= [[κ2, κ1], κ3] : (X + Y ) + Z → (X + Y ) + Z

Handy “shuffle maps” notations (the symbols illustrate what the maps do)



3. Effectuses

Bart Jacobs’ effectuses, introduced in [Jac15], provide a categorical setting for discrete, continuous and
quantum probability and logic. In appendix E, we give a handful of relevant effectus theoretic lemmas.

Definition 3.1 — An effectus B is a category satisfying the following properties:

• it has finite coproducts (0,+) and a terminal object 1
• for all A,B,X, Y ∈ B, f : A −→ B, g : X −→ Y , the following diagrams are pullbacks:

A+X
id+g

//

f+id
��

A+ Y

f+id
��

B +X
id+g

// B + Y

X

κ1

��

X

κ1

��

X +A
id+f

// X +B

(3.1a, 3.1b)

• the maps (1 + 1) + 1

:= [[κ1,κ2],κ2]

++

:= [[κ2,κ1],κ2]

33 1 + 1 are jointly monic, i.e. ∀f, g,

{
◦ f = ◦ g
◦ f = ◦ g

=⇒ f = g

We denote by MB := Pred(1) = Stat(2) = HomB (1, 2) (where 2 = 1 + 1) its effect monoid of scalars
(Theorem E.6), Pred := HomB (−, 2) : B→ (EModEModEMod MB)op its predicate functor (Lemma E.11) and Stat :=
HomB (1,−) : B→ ConvMB its state functor (Lemma E.10).

Example 3.1 We briefly give some examples of effectuses (for a more complete summarising table, see E.4,
and for more details, see [Cho+15; Jac15]):

• One of the most simple examples of effectus is the category Set of sets and functions, modelling classical
computation/logic. States ω : 1→ X in Set are elements ω ∈ X, predicates p : X → 2 are subsets p ⊆ X.
The effect monoid of scalars MSet := {0, 1} is the set of boolean truth values, so that the logical
validityE.2 is set membership.

• The Kleisli category of the generalised distribution monad K`(DM ), where M is an effect monoid, is
another important example of an effectus. States ω : 1→ X in K`(DM ) correspond to maps 1→ DM (X),
and so are generalised probability distributions ω ∈ DM (X) with coefficients in M , predicates p : X → 2
correspond to maps X → DM (2), where DM (2) ∼= M , i.e. ‘fuzzy’ predicates p ∈ MX valued in M . The
effect monoid of scalars is M , and logical validity is the expected value.

• Another key example of effectus is the opposite category C∗C∗C∗PU
op of C∗-algebras with positive unital maps

(for a quick reminder about C∗-algebras, see F), modelling quantum computation and logic (cf. [HZ08;
Kup]). Note that C∗C∗C∗PU

op has terminal object (the field of complex numbers C is initial in C∗C∗C∗PU) and
finite coproducts (C∗C∗C∗PU has finite products by taking finite products of underlying sets and defining
the operations pointwise). States in the effectus C∗C∗C∗PU

op coincide with the operator theoretic notion of
states: positive unital maps ω : X → C. Predicates on X are positive unital maps q : C× C→ X which
are in one-to-one correspondence with effects p ∈ X such that 0 ≤ p ≤ 1 by setting p := q((1, 0)) and
q((α, β)) = αp+ β(1− p). In [MG99], the authors point out that there are two types of effects: sharp
effects, that are projections describing accurate yes/no measurements, and unsharp effects, describing
imprecise yes/no measurements. Scalars in B = C∗C∗C∗PU

op are effects in the C∗-algebra C, i.e. the interval
[0, 1] ⊆ R. Logical validity corresponds to evaluation of ω at p, which amounts to taking the trace of ωp
when X is the C∗-algebra of bounded linear operators over of a finite-dimensional Hilbert space H ,
and ω is seen as a density matrix [Bec00] over H .

For our purposes, a crucial property an effectus may have is normalisation, introduced by Jacobs in
[JWW15].
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3.1 Effectuses with normalisation
Definition 3.2 An effectus has normalisation iff for every map σ : 1→ X + 1 such that σ 6= κ2, there exists
a unique state LσM : 1→ X such that (LσM + id) (! + id) σ = σ.

Example 3.2 As shown in [Cho+15; JWW15], the effectuses K`(D[0,1]) and C∗C∗C∗PU
op have normalisation:

• In K`(D[0,1]), a map σ : 1 → X + 1 is a probability subdistribution on X (i.e. with total measure
s :=

∑
x∈X ω(x) ≤ 1). If such a σ is non-zero on X (i.e. σ 6= κ2, that is s 6= 0), we recover the usual

notion of normalisation of probabilities: LσM(x) = σ(x)
s

• In C∗C∗C∗PU
op, if σ : X × C → C ∈ C∗C∗C∗PU is not equal to π2, then [0, 1] 3 σ((1, 0)) 6= 0, and LσM(x) = σ((x,0))

σ((1,0)) is
indeed linear and positive unital.

These two examples are special cases of a theorem attributed to Sean Tull in [Cho+15] stating that every
effectus whose effect monoid of scalars is [0, 1] has normalisation, and

We will now relate Jacobs’ effectuses with normalisation to the notions of effect monoid with normalisation
and symmetric left/right cancellative tricocycloid in Set we introduced before. In a nutshell, given an effectus
B with normalisation, its effect monoid of scalars MB has normalisation, and M\{1, 0} = M\{κ1, κ2} forms a
symmetric tricocycloid with left/double cancellativity. We have the following situation:

        Effectus with normalisation 

                                                                      

    sc
al

ar
s

        

scalars 

without 

κ
₁, κ

₂

Effect monoid with              
normalisation 

Tricocycloid with 
left/double cancellation 

  ≅

3.2 From an effectus to an effect monoid
Not only does the set of scalars of an arbitrary effectus B form an effect monoid (E.6), this effect monoid
happens to have normalisation in the sense we defined in section 2.1.2 as soon as B does in Jacobs’ sense. As
before, the proof can be found in appendix (Theorem G.1).

Theorem — Scalars of an effectus with normalisation form an effect monoid with normalisation (G.1).
If B is an effectus with normalisation, MB := HomB (1, 2) is an effect monoid with normalisation.

3.3 From an effectus to a tricocycloid
We will now show that for every effectus B, the set MB\{κ1, κ2} of scalars without the scalar 1 := κ1 and the
scalar 0 := κ2 forms an symmetric left/double cancellative tricocycloid in Set as soon as B has normalisation.
While trying to prove this directly, I got stuck in the calculations (which quickly become very tedious), but
it turns out that there is an elegant way to painlessly obtain the desired result by stating the problem in
terms of operads, a concept that we now briefly recall1. Operads – a word coined by May2 in [May89] – are

1for crash courses about operads, see [May97; Sta]. For more comprehensive references, see [Fre09; May89]
2a mix between ‘operations’ and ‘monads’. In [May97], he says: � The name “operad” is a word that I coined myself, spending a

week thinking about nothing else. �
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an abstraction of families of composable functions of various arities. They play an important role in several
fields, ranging from homotopy theory (from where they originated) to homological algebra, algebraic topology,
and mathematical physics. We will more specifically be concerned with symmetric operads, and the archetype
thereof: the endomorphism operad. An operad O is a family of sets Ok (also denoted by O(k)) for every k ≥ 0,
thought of as sets of k-ary operations. Graphically, we can depict every f ∈ Ok in a ‘string-diagrammatic’
way as a tree with one node (denoting the operation f ), k incoming edges from above (inputs), and one edge
going out below (output). Such an operation/tree f of arity k can be composed with other operations g1, . . . , gk
of arities n1, . . . , nk by pasting each of the k input edges of f to the output edge of one gi; the resulting
operation f(g1, . . . , gk) being of arity n1 + · · · + nk. In other words, for every k, n1, . . . , nk ∈ N, there is a
composition map cn1,...,nk

: Ok ×On1 × · · · ×Onk
→ On1+···+nk

sending f, g1, . . . , gk to f(g1, . . . , gk). For example,
with k = 2, n1 = 4, n2 = 3:

f g₁ g₂
⟼

 f (g₁, g₂) 

c4,3

Composition is required to be associative, i.e. f
(
g1(h1,1, . . . , h1,n1), . . . , gk(hk,1, . . . , hk,nk

)
)

equals
(f(g1, . . . , gk))(h1,1, . . . , h1,n1 , . . . , hk,1, . . . , hk,nk

), and have a unary unit 1 ∈ O1 (1(f) = f, f(1, . . . , 1) = f ). In
the obvious way, we can as well define a notion of suboperad of an operad. An operad is said to be symmetric
if the symmetric group Sn acts on Ok on the right for all k ((fσ)(g1, . . . , gk) =

(
f(g1, . . . , gk)

)
σ̃, where σ ∈ Sk

and (̃−) : Sk → Sn1+···+nk
is defined in the obvious way). Graphically, this corresponds to a permutation

of the input edges. Finally, note that generally, symmetric operads can be defined in the same way in any
symmetric monoidal category (by replacing the cartesian product by the tensor).

Example 3.3 — The endomorphism operad EndX is a fundamental example of operad, for X ∈ C where
(C ,×) is a cartesian category. EndX(k) := HomC

(
Xk, X

)
, and composition is given by composition and

product of maps: for example, if f : X2 → X, g1 : X4 → X and g2 : X3 → X, f(g1, g2) := f ◦ (g1×g2) : X7 → X.
The general definition of operad is an abstraction of this very example.

We now go back to our effectuses and tricocycloids. Given an effectus B with normalisation, we will apply
the following observation to (a suboperad of) the endomorphism operad of Bop:

Lemma 3.1 Let O be a symmetric operad. To to simplify the notations, we put c0 := c2,1(−,−, 1) : O(2)⊗
O(2) ⊗ O(1) → O(3) and c1 := c1,2(−, 1,−) : O(2) ⊗ O(1) ⊗ O(2) → O(3). If c1 is invertible and
c1,3(−, 1,−) : O(2) ⊗ O(1) ⊗ O(3) → O(4) is monic, then (O(2), v, γ) is a symmetric tricocycloid, where
v := c−1

1 c0 and γ is given by the action of S2 on O(2).

Proof
So as to show the 3-cocycle ((v⊗1)(1⊗σ)(v⊗1) = (1⊗v)(v⊗1)(1⊗v)) and symmetry (v(γ⊗1)v = (1⊗γ)v(1⊗γ))
conditions of the tricocycloid, the proof consists in showing that the red paths in the diagrams that follow
coincide, and then use the monicity hypothesis in the 3-cocycle one to get the desired result (in the symmetry
one, we get the result because it is postcomposed by two invertible maps). Note that the tree on each node
depicts the path from this node to the center of the diagram.

A fortunate phenomenon happens, enabling us to bypass the tedious computations that a more direct
approach would have required! By postcomposing by the two red monic maps going to the center of the
diagrams, the proof reduces to exploiting the (elementary) commutativity of the inner diagrams, step by step
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(as indicated by the colored numbers and highlightings: starting from the silver 0 all the way to the yellow 5).
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Let B be an effectus. As Bop is cartesian, we can define the following suboperad of End1 in Bop (note that
we get rid of the maps factorising through a strictly smaller number of summands to overcome the fact
the maps σ : 1→ X + 1 that can be normalised in an effectus with normalisation are subject to a ‘non-zero’
condition (σ 6= κ2)):

O(k) := HomBop (1× · · · × 1, 1)\{maps that factor through
i<k factors︷ ︸︸ ︷

1× · · · × 1}
= HomB (1, 1 + · · ·+ 1)\{maps that factor through 1 + · · ·+ 1︸ ︷︷ ︸

i<k summands

}

As mentioned earlier, we will now apply Lemma 3.1 to this operad, when B has normalisation. We can do
so (the hypotheses are satisfied) because of:

Lemma 3.2 If B has normalisation, for all k ≥ 2, the maps

ck := c1,k(−, 1,−) :

HomB (1, 2)×HomB (1, k) −→ HomB (1, k + 1)

1
r7−→ 2, 1

τ7−→ k 7−−→ 1
r7−→ 2

1+τ7−−→ 1 + k 7−→ k + 1

are invertible.

Proof
We claim that c−1

k sends 1
ρ7−→ k + 1 to the couple

1
ρ7−→ k + 1 7−→ 1 + k

1+!7−−→ 2, L1 ρ7−→ k + 1 7−→ k + 1M

• c−1
k ck = id: Let 1

ρ7−→ k + 1 = ck(x, y) = 1
y7−→ 2

1+x7−−→ 1 + k 7−→ k + 1.
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Consider α := L ρM = L (1 + x)yM: we have

(α+ 1)(! + 1) ρ = ρ

But

(! + 1) ρ = (! + 1) (1 + x)y

= (! + 1) (1 + x)y as =

= (1+!) (1 + x)y

= (1+!)(1 + x)y

= (1+!x)︸ ︷︷ ︸
= id

y = y

The third and last lines yield (1+!) ρ = (1+!) (1+x)y = y, and by uniqueness of normalisation,
as (x+ 1)(! + 1) ρ = (x+ 1) y = (1 + x)y = ρ, we get x = α

• ckc
−1
k = id:

ckc
−1
k (ρ) = (1 + L ρM︸ ︷︷ ︸

:= α

)(1+!) ρ

But, by normalisation: (α+ 1)(! + 1) ρ = ρ = ρ. Consequently:

ρ = (α+ 1)(! + 1) ρ

= (α+ 1) (1+!) ρ

= (α+ 1)(1+!) ρ

= (α+ 1)(1+!) ρ = ckc
−1
k (ρ)

which yields the result.

�
With Lemma 3.2, it is not hard to show that the hypotheses of Lemma 3.1 are satisfied for the operad O

we have defined in case B has normalisation, a corollary of which is

Corollary — Scalars of an effectus with normalisation form a tricocycloid. If B is an effectus with
normalisation,

H := HomB (1, 2)\{κ1, κ2}

is a symmetric tricocycloid, where γ is postcomposition by , and v sends r, s : 1→ 2 to

v(r, s) := 1
r7−→ 2

s+17−−→7−→ 1 + 2
1+!7−−→ 2︸ ︷︷ ︸

= r·s in the effect monoid MB

, L1 r7−→ 2
s+17−−→7−→ 2 + 1M

Theorem — Scalars of an effectus with normalisation form a left/double-cancellative tricocycloid (??).
If B is an effectus with normalisation, H := HomB (1, 2)\{κ1, κ2} is a left/double-cancellative tricocycloid.

We have already shown that H is a tricocyloid in Set. On top of that, MB = H ∪ {κ1, κ2} forms an effect
monoid with normalisation, as seen in Theorem G.1. Thus, by Corollary D.1, · is left-cancellative away from
0 := κ2 ∈ H ∪ {κ1, κ2}, and by distributivity, H satisfies the double cancellation property.

We now prove a result relating an effectus to the Kleisli category of the distribution monad over its
scalars, thereby shedding light on one of the introductory questions.
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3.4 Effectus and Kleisli category of the distribution monad
over the scalars

Definition 3.3 — Pairwise orthogonality: n predicates p1, . . . , pn : X → 2 are said to be pairwise orthogonal
if there exists a common bound b : X → n+ 1 such that ∀1 ≤ i ≤ n, [Bi, κ2] b = pi. As it happens, their sum

is defined as
n

>
i=1

pi := (∇+ id) b.

NB such a bound b is unique by joint monicity of the family ([Bi, κ2])1≤i≤n (Lemma E.3)

Proposition — G.1 In B, if n predicates p1, . . . , pn : X → 2 are pairwise orthogonal: for all s1, . . . , sn : 1→ 2,
so are the predicates p1 · s1, . . . , pn · sn : X → 2.

NB Thanks to Proposition G.1, the sum
n

>
i=1

ri · φi(x) in the definition of the multiplication of DM (1.1) is well defined.

Theorem — G.2. Let B be an effectus whose objects are finite coproducts of 1. Then

B ∼= K`N(DMB)

Proof
In what follows, as HomB (m,n) ∼=

∏
1≤i≤m HomB (1, n) by universal property of the coproduct, we denote by

q1, . . . , qm : 1→ n the m morphisms associated by this isomorphism to a morphism q = [q1, . . . , qm] : m→ n.
We put

F :=


B −→ K`N(DMB)

n 7−−→ n

m
q−→ n 7−−→

{
m −→ DMB(n)

k 7−−→
∑

1≤i≤n
Bi q

k |i〉

In Theorem G.2, we show that F is a fully faithful functor, i.e. – as it is clearly bijective-on-objects – an
isomorphism. �



4. Additional results and new prospects

Due to lack of space, we briefly lay out some of the results that can be proven using the previous lemmas:

• When M has normalisation:

– objects in ConvM are given by binary convex sums, which generalises the situation observed by
Garner in [Gar18].

– DMB-algebras coincide with idempotent commutative ?H -monoids, which implies that DMB is linear
exponential. In comparison, Jacobs shows in [JWW15] that, in the special case where MB = [0, 1],
Stat preserves + (thereby becoming a map of effectuses, which enable us to see the state-and-effect
triangle associated to the effectus as a triangle in the category of effectuses). It is not completely
clear yet if we can generalise this to the situation where MB is an effect monoid with normalisation,
but the result is likely to hold as well.

• Lawvere theory-related results (for a brief survey about Lawvere theories, see [Bár13; Gar13; HP07]):

– As DMB is a finitary monad (i.e. preserving filtered colimits): its category of DMB-algebras is
equivalent to the category of models of its associated Lawvere theory K`N

op(DMB), i.e. the category
of finite product preserving functors from K`N

op(DMB) to Set:

EM(DMB) ' FProd (K`N
op(DMB),Set)

and we hence have the following commutative diagram:

EM(DMB) ' FProd (K`N
op(DMB),Set)� _

����

K`N(DMB) �
� i // B

Stat

33

Ni := HomB(i(=),−)
// [K`N

op(DMB),Set]

It then appears that Stat is fully-faithful ⇐⇒ Ni is fully-faithful ⇐⇒ i is dense (see [Kad] for a
student’s elmentary exposition on the nerve functor).

– Since the adjunction T− a K`N
op(−) – with [HP07]’s notations, where T− is the functor sending

a Lawvere theory to its associated monad – restricts to an equivalence between the category of
Lawvere theories and the full replete reflective subcategory of finitary monads over Set:

K`N
op(DMB) ∼= K`N

op(TBop) =⇒ DMB
∼= TBop

– This explains where Stat comes from in a natural way, to some extent.

• Models of ILL: if M has normalisation, DM is a linear exponential monad: does it live in a model of
linear logic? We sketch some arguments in this respect:

1. First attempt: (Set, ?M̊ ) is symmetric monoidal, but since the initial object is a unit for ?M̊ , it
cannot be closed. Despite this, we may still wonder if we have a model of MELL− (without units).
This remains of significant interest, since Girard’s proof nets do not incorporate units, and attempts
to take them into account can be argued to be unsatisfactory to some extent, in that they are
considerably more intricate and fail at providing purely geometric proof normal forms. In this
sense, equivalence of MLL− proofs have been very soon shown to be in PTIME via Girard’s proof
nets, while an analogous result for MLL remains an open problem.
In his PhD thesis [Hou13], Houston shows that the ordinary definition of a SMCC where every
mention of the unit object is removed (which he calls a ‘unitless SMCC’) is not enough to have a
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model of MLL−. But he gives a simple criterion fixing this, viz. that every arrow A → B stems
from a unique linear element of A( B (i.e. a natural transformation γX : X → (A( B)⊗X such
that αA(B,X,Y (γX ⊗ Y ) = γX⊗Y : X ⊗ Y → (A( B) ⊗ (X ⊗ Y )). Unfortunately, this criterion is
not satisfied in our case.

2. To circumvent the ‘0 being the unit for the tensor’ problem, we may go about considering ?M ,
where M is seen as a lax tricocycloid. But in this case, Ross Street’s construction only yields a lax
semi-monoidal category.

3. If a functor F : A → B is lax monoidal [nLaa], then the left Kan extension LanF : Â → B̂ can
be shown to be lax monoidal. So if T : A → B is an opmonoidal monad, T op : Aop → Bop is lax
monoidal, and LanF : [A,Set] → [B,Set] is lax monoidal, thus LanF

op : [A,Set]op → [B,Set]op is
oplax monoidal. But if T is linear exponential, does LanF

op remain linear exponential? We believe
so, but have not proven it.

4. In the same vein as the previous approach, we may also try to Kan extend ySetDM along the
Yoneda embedding instead.

Lastly, we did not have time to delve into this, but it might be of interest to try to link what we did
with Girard’s quantum coherence spaces [Gir03]. These do not model the exponential modalities,
because Girard only tackles the finite-dimensional case, but we may have a take on the matter with the
generalised distribution monad being linear exponential.

When it comes to the 3-cocycle condition satisfied by a tricocycloid, it comes from non-abelian cohomology,
and corresponds to a form of higher-dimensional coherence condition (in our case: associativity) in higher
categories. A tricocycloid corresponds to an element of dimension 4 in the nerve of the tricategory with one
object and one morphism that constitutes the double delooping of the braided monoidal category in which the
tricocycloid is defined. For more details about this, see the seminal paper of Ross Street, which investigates
and clarifies this link between higher-dimensional coherence conditions and non-abelian cohomology: [Str87].

4.1 Conclusion
Throughout this internship, we have related effect monoids, tricocycloids and effectuses when they satisfy
some conditions reminiscent of a form of generalised ‘normalisation’ (of probability subdistributions). Our
notions of effect monoids with normalisation and tricycloids with left/double cancellation are directly related
to Jacobs’ notion of effectus with normalisation. Given an effectus with normalisation, its effect monoid
of scalars has normalisation, and if we remove the scalars 0 and 1 (corresponding to the two coprojections
κ1, κ2), it also forms a symmetric tricocycloid with left/double cancellation. On top of that, we have that

• the categories of effect monoids with normalisation and of symmetric left/double cancellative tricocyc-
loids in Set are isomorphic

• when the effect monoid M has normalisation, the convex spaces over M are given by abstract binary
sums, the DM -algebras are idempotent commutative monoids for the tensor induced by the tricocycloid
associated to M , and DM is linear exponential

• we have exhibited the generalised distribution monad DMB over the scalars of an effectus whose objects
are finite coproducts of the terminal object 1 as the monad associated to the Lawvere theory Bop, due to
K`N(DMB) and B being isomorphic. In the general case, we have seen that B can be embedded, under
some equivalent conditions (among which the fully-faithfulness of the state functor), in the category of
presheaves over K`N(DMB)op, which gives a natural explanation of the ‘origin’ of the state functor.

• we have sketched some ideas to come up with models of linear logic based on the generalised distribution
monad DM .

We now have a set of results that can serve as a toolbox to further investigate the relationship between
various fields, via the triad: effect monoids (quantum mechanics/logic), tricocycloids (quantum algebra), and
effectuses (quantum and probabilistic logic and computation). We refer the reader to the first ‘overview’
section for more details about future prospects.
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A. Notations

General notations
∼= Isomorphism ' Equivalence
gf = g ◦ f = f ; g if f : X → Y, g : Y → Z:

morphism composition
id : X → X or 1: X → X Identity morphism

κi (i ∈ N) Coprojections (if a coproduct is involved) πi (i ∈ N) Projections (if a product is involved)

[f, g] : A+B → X copairing of f : A → X and
g : B → X

f + g : A+B → X + Y coproduct [κ1f, κ2g] of
f : A→ X and g : B → Y

0, 1 or 0, 1 initial and terminal objects ! : 0→ X, ! : X → 1 initial/terminal morphism
(when not the exponential modality in linear logic)

n ∈ C in a category C with terminal object and
coproducts: (1 + · · ·+ 1) + 1 (n times)

n ·X X + · · ·+X (n times)

Bi : X1 + · · ·+Xn → Xi + 1

[κ2!, . . . , κ2!, κ1, κ2!, . . . , κ2!] where κ1 is in posi-
tion i, everywhere else: κ2 !

f : A ⇀ B Partial map from A to B

∇ : X + · · ·+X → X codiagonal [id, . . . , id] : X+
· · ·+X → X

Set category of sets and functions

K`(T) Kleisli category of the monad T EM(T) Eilenberg-Moore category of T

K`N(T) Full subcategory of K`(T) with finite cop-
roducts of 1 (“numbers” n) as objects
B(H ) ⊆ HomHilbHilbHilb (H ,H ) Bounded linear

maps on a Hilbert space H

DM(H ) Set of density matrices of a finite-
dimensional Hilbert space H Non-standard nota-
tions will be introduced when used for the first time,
but for convenience, a glossary of notations can be
found in appendix A.

If B is an effectus (definition 3.1), we denote by
• Pred := HomB (−, 1 + 1) its predicate functor
• Stat := HomB (1,−) its state functor
• MB := Pred(1) = Stat(2) = HomB (1, 2) its effect monoid of scalars (Theorem E.6)

Handy “shuffle maps” notations (the symbols illustrate what the maps do)

:= [[κ1, κ2κ1], κ2κ2] : (X + Y ) + Z → X + (Y + Z)

:=
−1

: X + (Y + Z)→ (X + Y ) + Z

:= [[κ1, κ2!], κ2] : (X +X) + 1→ X + 1

:= [[κ2!, κ1], κ2] : (X +X) + 1→ X + 1

:= (X + Y ) + Z −→ X + (Y + Z) −→ (Y + Z) +X

:=
−1

: (Y + Z) +X → (X + Y ) + Z

:= [κ2, κ1] : X + Y → Y +X

:= [[κ1, κ3], κ2] : (X + Y ) + Z → (X + Y ) + Z

:= [[κ2, κ1], κ3] : (X + Y ) + Z → (X + Y ) + Z

A.0.1 Abbreviations
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Table A.1: Abbreviations/Acronyms

General

iff: if and only if
resp.: respectively
wlog: without loss of generality
cf.: see
v/vs/vs.: versus

Effect Algebras PCM: partial commutative monoid
EA: effect algebra

Categories SMC: symmetric monoidal category
SMCC: symmetric monoidal closed category

Linear Logic

ILL/CLL: intuitionistic/classical linear logic
MLL: multiplicative linear logic
MALL: multiplicative additive linear logic
MELL: multiplicative exponential linear logic



B. Effect algebras

An effect algebra carries a poset structure by setting x ≤ y ⇐⇒ ∃z; x > z = y. A partial difference can
also be given by y 	 x = z ⇐⇒ x > z = y. Moreover, in an effect algebra, the sum is easily shown to be
left-cancellative, since a> b = a> b′ =⇒ b = (a> (a> b)⊥)⊥ = (a> (a> b′)⊥)⊥ = b′.

Example B.1 — Non-examples of effect algebras
Here are two key example of PCMs that are not effect algebras.

Non-examples
The set of partial functions from a set X to [0, 1] can be endowed with two PCM structures, by setting 0 to be
the empty function (with empty domain), and

• f > g to be the copairing (disjoint union) of f and g : X → [0, 1] when f ⊥ g ⇐⇒ dom f ∩ dom g = ∅
• f > g to be the pointwise sum of f and g : X → [0, 1] when f ⊥ g ⇐⇒ ∀x ∈ dom f ∩ dom g. f(x) + g(x) ≤ 1

But in both cases, if we set 1 to be the only reasonable choice (the constant function equal to 1), we do not have
an effect algebra: in the first (resp. second) case, the existence (resp. uniqueness) of the orthocomplement
does not always hold; indeed, consider a partial function such that dom f = {0} and f(0) < 1: it has no
orthocomplement under copairing (resp. f(0) = 1, in which case the two partial functions which are equal
to 1 everywhere except at 0, where one is not defined and the other equals 0, are both orthocomplement).
Note that these examples can easily be generalised to the set of functions from a set X to an arbitrary effect
monoid M .

Example
In the previous non-example: the second case (pointwise addition) can be made into an effect algebra by
restraining the codomain of the partial functions to be (0, 1] (excluding 0), or M\{0, 1} in the general case.



C. Category theory reminders

C.1 Monoids, monads, and modules
Monoids are pervasive in category theory. The most basic instances that spring to mind are monoids in the
category Set of sets, which will henceforth be referred to as ”classical” monoids. This section is a quick and
dirty reminder of related notions that will come in handy later, but we refer to [Lan78], [Rie17], and [Lei16]
for more information on the categorical background.

Roughly, and at the risk of oversimplifying, in the toolbox of a seasoned category theorist, there are three
main ways to generalise a given mathematical structure – let’s say a monoid M in the “classical” sense (i.e. in
Set), for example – : they may either resort to

1. a process known as vertical categorification, also called enrichment: as the underlying structure of
our monoid M is a set (seen as a discrete category), two elements x, y ∈ M are either equal or not
equal. This can be thought of as: either the set of morphisms between x, y is HomM (x, y) = {∗} written as

= 1

(when x = y), or HomM (x, y) = ∅ written as
= 0 (x 6= y). As it happens, for every x, y ∈ M , HomM (x, y)

is an object of the category1 2 := 0 ? // 1 : our discrete category M is said to be enriched over
2 (and more generally, the same goes for every preorder: the preorder is trivial in a set). Vertical
categorification consists in replacing 2 by any other category C (under a few assumptions so that it
makes sense to do so, viz. C is monoidal). Most of the times, this involves replacing equalities by
coherent isomorphisms/equivalences.

2. or horizontal categorification, also called oidification: the ultimate example of oidification is going
from a group to a groupoid, or, to retrieve our previous example, from a monoid to a category: a
monoid is easily seen to be nothing but a category with exactly one-object (the morphisms correspond to
the element of the monoid, categorical composition being the monoid multiplication and the identity
morphism the unit element). Horizontal categorification consists in getting rid of the “exactly one
object” constraint: we arrive at the notion of categories2, if we started with monoids (and of groupoids,
from groups (one-object categories where all the morphisms are invertible)).

3. or a third possibility, called internalisation: our classical monoid (like many other traditional structures
in mathematics) are defined in the category Set, in that they are nothing but a carrier set equipped
with some extra-structure and satisfying certain properties3. Internalisation involves replacing Set
with another “suitable” category C (preferably belonging to a class of categories containing Set): our
formerly classical monoids then become monoids internal to C (also called monoid objects in C , or
simply monoids when the context is clear4). Oddly enough, what is meant by “suitable” is that C ought
to be a (vertically) categorified version of the very same structure we are generalising from Set to C !
In our classical monoid example, C would have to be a vertically categorified monoid, i.e. a monoidal
category. This is known as Baez’s and Dolan’s microcosm principle:

“
”

[. . .] certain algebraic structures can be defined in any category equipped with a categorified version
of the same structure. ([BD97, page 11])

In some cases, internalisation generalises vertical categorification. This is the case for enrichment over
the category Cat of (small5) categories, for example: categories enriched over Cat, called 2-categories,
are categories internal to Cat (double categories) satisfying a special condition6.

1which is, as required (to anticipate what is coming), a monoidal category (a ‘categorified monoid’), with × as tensor and 1 as unit
2which should be called “monoidoids” if the terminology was respected analogously to groups and groupoids
3incidentally, this is really the model-theoretic way to regard models of a given theory: the extra-structure is specified by the

signature of the L -structures, and the properties by the theory
4which will be the convention later, as monoids in the traditional sense are qualified as “classical”
5but for the sake of simplicity, size issues will be omitted in what follows
6viz. all the morphisms in the category of objects are trivial; in order to collapse the “cubical” 2-cells into “globular” ones, see [CL,

section 5.1.3] for example.
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2-categories, due to being enriched over Cat, can be thought of as 2-dimensional categories, hence paving
the way for higher-dimensional category theory. By calling objects (resp. morphisms between objects) 0-cells/0-
arrows/0-morphisms7 (resp. 1-arrows between 0-arrows), there are 2-arrows between 1-arrows (corresponding
to the morphisms of the hom-category). But we could go further: by enriching over the category 2-Cat of
2-categories, we get a 3-category: there are n+ 1-arrows between n-arrows for all n ≤ 2.

x

f

��

g

AA
yα

��

x

f

��

g

AA
yα

��

β

�	

ϕ *4

x, y: 0-arrows
f, g: 1-arrows
α, β: 2-arrows
ϕ: 3-arrow

A 2-cell in a 2-category and a 3-cell in a 3-category

And by induction, enriching over the category n-Cat of n-categories for n ∈ N, yields a n+ 1-category: to
be more specific, a strict n+ 1-category. By strict, we mean that the associativity and unit laws of enriched
categories hold on the nose; e.g. if f, g, h are 1-morphisms, the two 1-morphisms (f ◦ g) ◦ h and f ◦ (g ◦ h) are
equal: all the higher dimensional cells between them are identities. But in weak n-categories, the situation
is more general in that these laws hold only up to (coherent) higher-dimensional isomorphisms: there
are invertible k + 1-arrows between the k-arrows which were made equal in strict n-categories, and these
k + 1-arrows satisfy themselves some coherence axioms. That being said, a bicategory (resp. tricategory)
is a weak 2-category (resp. 3-category): therein, in the previous example, (f ◦ g) ◦ h and f ◦ (g ◦ h) are not
a priori equal, but there exists a 2-isomorphism αf,g,h : (f ◦ g) ◦ h⇒ f ◦ (g ◦ h) between them (satisfying a
coherence law known as the pentagon law).

With these general principles in mind, we briefly recall a handful of definitions important for what follows.

Definition C.1 — A monoidal category (C ,⊗, I) is a category equipped with a bifunctor ⊗ : C ×C → C called
tensor product, an object I ∈ C called tensor unit and structural natural isomorphisms: an associator
αX,Y,Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z) satisfying the pentagon law ((1 ⊗ αX,Y,Z)αW,X⊗Y,Z(αW,X,Y ⊗ 1) =
αW,X,Y⊗Z αW⊗X,Y,Z), a left unitor λX : 1⊗X → X, and a right unitor ρX : X ⊗ 1→ X satisfying the triangle
law (ρX ⊗ 1 = (1⊗ λY )αX,1,Y ). C is said to be strict when the structural isomorphisms are identities.

In a monoidal category, an important consequence of the pentagon and triangle laws is Mac Lane’s
coherence theorem for monoidal categories [Lan63]: every diagram composed of structural morphisms
commutes, which is equally to say that every monoidal category is (monoidally) equivalent to a strict one,
and will enable us to assume that our monoidal categories are strict later.

Definition C.2 — A monoid (object) M ∈ C in a monoidal category (C ,⊗, I) is an object equipped with a
multiplication µ : M ⊗M →M which is associative (µ(µ⊗ 1) = µ(1⊗ µ)α) and a unit η : M →M satisfying
the left (µ(η ⊗ 1) = λ) and right (µ(1⊗ η) = ρ) unit laws.

In a monoidal category, the tensor ⊗ being commutative is no longer a “boolean property”, contrary
to a classical monoid (where the operation is either commutative or not), as HomC (X ⊗ Y, Y ⊗X) may be
any set, and not only either ∅ = 0 ∈ 2 or {∗} = 1 ∈ 2 anymore. As a matter of fact, more subtle ways in
which ⊗ may be thought of as “commutative to a certain extent” are indicated by natural transformations
σX,Y : X ⊗ Y → Y ⊗X called ”braidings” satisfying some assumptions.

Another germane notion is the concept of delooping

Example C.1 — Delooping examples • monoid, group
• monoidal category
• braided monoidal category

7henceforth: “cell”, “morphism”, and “arrow” will be synonymous



D. Effect Monoids v Tricocycloids

D.1 Effect monoids with normalisation
Let M be an effect monoid.

Proposition D.1 For all a, b ∈M , a⊥b⊥ = (a> a⊥b)⊥ = (b> ab⊥)⊥

Proof

1 =

{
a> a⊥ = a> a⊥(b> b⊥) = a> a⊥b> a⊥b⊥

b> b⊥ = b> (a> a⊥)b⊥ = b> ab⊥ > a⊥b⊥
�

M is said to have normalisation iff ∀a 6= 1, b ∈M.a⊥ b =⇒ ∃!c; b = a⊥c

Corollary D.1 If M has normalisation, M is left-cancellative away from zero, i.e.

∀a 6= 0, b, b′ ∈M. ab = ab′ =⇒ b = b′

Proposition D.2 If M has normalisation, then for all a > b1 > · · · > bn = 1 with a 6= 1, there exist unique
c1 > · · ·> cn = 1 such that ∀i. bi = a⊥ci

Proof
By induction on n. The base case (n = 1) is obvious. Suppose the results holds for n, we prove it for n + 1.
Given a> b0 > · · ·> bn = 1, there exists, by normalisation, a unique c0 such that b0 = a⊥c0. Thus

(a> a⊥c0) > b1 · · ·> bn = 1

and, by induction, we have unique elements d1 > · · · > dn = 1 such that bi = (a > a⊥c0)⊥di

left cancellativity
↓
=a⊥c⊥0 di for all

1 ≤ i ≤ n. So by taking ci = c⊥0 di for all 1 ≤ i ≤ n, we get c0 > c1 > · · · > cn = 1 such that bi = a⊥ci for all
0 ≤ i ≤ n. These ci are unique, by left cancellativity. �

D.2 Tricocycloids in Set

Lemma D.2 Let (H, v, γ) be a lax tricocycloid with a symmetry. It is a tricocycloid iff v(γ ⊗ γ)v(γ ⊗ γ) = 1, in
which case v−1 = (γ ⊗ γ)v(γ ⊗ γ).

Proof
If v is invertible, then it is easy to see that γ is a symmetry for v−1, in that v−1(γ ⊗ 1)v−1 = (1⊗ γ)v−1(1⊗ γ),
and

v

= (1⊗γ)v−1v(γ⊗1)︷ ︸︸ ︷
(γ ⊗ γ) v(γ ⊗ γ)

= v(1⊗ γ)v−1v(γ ⊗ 1)v(γ ⊗ γ)

= v(1⊗ γ)v−1(1⊗ γ)v(1⊗ γ)(γ ⊗ γ) (by due to γ being a symmetry for v)

= vv−1(γ ⊗ 1)v−1v(1⊗ γ)(γ ⊗ γ) (since γ is a symmetry for v−1)
= 1 (as γ is an involution)

Conversely, if v(γ⊗γ)v(γ⊗γ) = 1 then v(γ⊗γ)v = (γ⊗γ) since γ is an involution, and so (γ⊗γ)v(γ⊗γ)v = 1;
that is: v has inverse (γ ⊗ γ)v(γ ⊗ γ). �
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D.3 From a tricocycloid to an effect monoid

Lemma D.3 In a symmetric tricocycloid H ∈ Set, for all r, s, t, d, d′ ∈ H:

(vi) (rs)⊥(r � s)⊥ = r⊥

(vii) (rs)⊥ � (r � s)⊥ = s⊥
(viii) (r � st)(s � t)⊥ = (rs � t)⊥(r � s)

(ix) (r�st)�(s�t)⊥ = ((rs�t)⊥�(r�s))⊥
(x) ((s⊥ �d′)⊥d)⊥ = ((sd)⊥ � (s�d)⊥d′)⊥

(xi) ((s⊥ � d′)⊥ � d)⊥ = (s � d)⊥ � d′

Proof

• Proof of (vi) and (vii): these assertions are a direct consequence of 2.1, but they can be proven in another
way, by resorting to (−)⊥ being involutive and v injective. We lay out this approach as well, as it will
enable us to prove the other identities in a similar fashion. As (−)⊥ is an involution and v an injection,
it suffices to show that {

((rs)⊥(r � s)⊥)⊥((rs)⊥ � (r � s)⊥) = rs⊥

((rs)⊥(r � s)⊥)⊥ � ((rs)⊥ � (r � s)⊥) = r � s⊥

which is the case, because

((rs)⊥(r � s)⊥)⊥((rs)⊥ � (r � s)⊥)
(iv)
= (rs)⊥(r � s) (iv)

= rs⊥

((rs)⊥(r � s)⊥)⊥ � ((rs)⊥ � (r � s)⊥)
(v)
= ((rs)⊥ � (r � s))⊥ (v)

= r � s⊥

• Proof of (viii) and (ix): similarly, it suffices to show that{
((r � st)(s � t)⊥)⊥ · ((r � st) � (s � t)⊥) = ((rs � t)⊥(r � s))⊥ · ((rs � t)⊥ � (r � s))⊥

((r � st)(s � t)⊥)⊥ � ((r � st) � (s � t)⊥) = ((rs � t)⊥(r � s))⊥ � ((rs � t)⊥ � (r � s))⊥

which is due to

((r � st)(s � t)⊥)⊥ · ((r � st) � (s � t)⊥)
(iv)
= (r � st)(s � t) (ii)

= (rs � t)
(vi)
= ((rs � t)⊥(r � s))⊥ · ((rs � t)⊥ � (r � s))⊥

((r � st)(s � t)⊥)⊥ � ((r � st) � (s � t)⊥)
(v)
= ((r � st) � (s � t))⊥ (iii)

= (r � s)⊥

(vii)
= ((rs � t)⊥(r � s))⊥ � ((rs � t)⊥ � (r � s))⊥

• Proof of (x) and (xi): first, we observe that(
( s⊥︸︷︷︸

(vi)
= (sd⊥)⊥(s�d⊥)⊥

� d′)⊥ d︸︷︷︸
(vii)
= (sd⊥)⊥�(s�d⊥)⊥

)⊥ (viii)
=
(
((sd⊥)⊥ � (s � d⊥)⊥d′)((s � d⊥)⊥ � d′)⊥

)⊥
and(

s⊥ � d′)⊥ � d
)⊥

=
(
((sd⊥)⊥(s � d⊥)⊥ � d′)⊥ � (((sd⊥)⊥ � (s � d⊥)⊥)

)⊥
(ix)
= ((sd⊥)⊥ � (s � d⊥)⊥d′) � ((s � d⊥)⊥ � d′)⊥

which enable us to conclude analogously, since:

((s⊥ � d′)⊥d)⊥((s⊥ � d′)⊥ � d)⊥ =
(
((sd⊥)⊥ � (s � d⊥)⊥d′)((s � d⊥)⊥ � d′)⊥

)⊥ · (((sd⊥)⊥ � (s � d⊥)⊥d′) � ((s � d⊥)⊥ � d′)⊥
)

(iv)
= ((sd⊥)⊥ � (s � d⊥)⊥d′) · ((s � d⊥)⊥ � d′) (ii)

= (sd⊥)⊥(s � d⊥)⊥︸ ︷︷ ︸
(vi)
= s⊥

� d′
(ii)
= ((sd)⊥ � (s � d)⊥ d′)((s � d)⊥ � d′)
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and

((s⊥ � d′)⊥d)⊥ � ((s⊥ � d′)⊥ � d)⊥ =
(
((sd⊥)⊥ � (s � d⊥)⊥d′)((s � d⊥)⊥ � d′)⊥

)⊥ � (((sd⊥)⊥ � (s � d⊥)⊥d′) � ((s � d⊥)⊥ � d′)⊥
)

(v)
=
(
((sd⊥)⊥ � (s � d⊥)⊥d′) � ((s � d⊥)⊥ � d′)

)⊥ (iii)
= ((sd⊥)⊥ � (s � d⊥)⊥)⊥

(vii)
= d⊥

(vii)
= (sd)⊥ � (s � d)⊥

(iii)
= ((sd)⊥ � (s � d)⊥ d′) � ((s � d)⊥ � d′)

�

Corollary D.4 In a symmetric tricocycloid, for all s, d:

(s⊥d)⊥((s⊥ � d)⊥d)⊥ = (sd)⊥((s � d)⊥d)⊥

Proof
Since s⊥d = (sd)⊥(s � d)⊥d by (vi) and ((s⊥ � d)⊥d)⊥ = ((sd)⊥ � (s � d)⊥ d) by (x), it comes that

(s⊥d)⊥((s⊥ � d)⊥d)⊥ = ((sd)⊥(s � d)⊥d)⊥((sd)⊥ � (s � d)⊥ d)
(iv)
= (sd)⊥((s � d)⊥d)⊥

�
A symmetric tricocycloid will be said to be left-cancellative if ∀r, s, s′. rs = rs′ =⇒ s = s′ and satisfying

the double cancellation property if ∀r, s, r′, s′. rs = s′r′ and rs⊥ = (s′)⊥r′ =⇒ r = r′.
Proposition D.3 In a symmetric tricocycloid where the double cancellation property holds:

∀d, s. d⊥ = (sd)⊥((s � d)⊥d)⊥

Proof
By double cancellation, since

(sd)⊥((s � d)⊥d)⊥ · ((s � d)⊥ � d)
(iv)
= (sd)⊥((s � d)⊥d)⊥ · ((s � d)⊥ � d) = (sd)⊥(s � d)⊥d⊥

(vi)
= s⊥d⊥

and
(sd)⊥((s � d)⊥d)⊥ · ((s � d)⊥ � d)⊥

Corollary D.4
= (s⊥d)⊥((s⊥ � d)⊥d)⊥ · ((s � d)⊥ � d)⊥

(xi)
= (s⊥d)⊥((s⊥ � d)⊥d)⊥ · ((s⊥ � d)⊥ � d)

(iv)
= (s⊥d)⊥(s⊥ � d)⊥d⊥

(vi)
= sd⊥

�

D.3.1 From Effect Monoids to Tricocycloids

Lemma D.5 Let H be a set equipped with a function v : H × H → H × H, (r, s) 7−−→ (r · s, r � s) and an
involution γ : H → H, r 7−−→ r⊥. Suppose that · is left cancellative. Then H is a symmetric tricocycloid iff · is
associative and the axioms Symmetry 1 and Symmetry 1 orthogonal hold.

Proof
By Lemma 2.1, it suffices to prove that the axioms 3-cocycle 1 & 2, Symmetry 2, and Symmetry 2 orthogonal
hold. We first prove that the axiom 3-cocycle 1 holds. Using axiom Symmetry 1 three times we have

(rst)⊥(r � st)(s � t) = r(st)⊥(s � t) = rst⊥ = (rst)⊥(rs � t)

and so rs � t = (r � st)(s � t) by left cancellativity.
We now prove axiom 3-cocycle 2. We calculate that

(rs)⊥
(
(r � st) � (s � t)

)
= (rst)⊥(rs � t)⊥

(
(r � st) � (s � t)

)
= (rst)⊥

(
(r � st)(s � t)

)⊥(
(r � st) � (s � t)

)
= (rst)⊥(r � st)(s � t)⊥

= r(st)⊥(s � t)⊥ = rs⊥ = (rs)⊥(r � s)
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using, in succession: axiom Symmetry 1 orthogonal, 3-cocycle 1, axiom Symmetry 1 twice, axiom Symmetry 1
orthogonal, and axiom Symmetry 1. So by left cancellativity we have (r � st) � (s � t) = r � s as desired.

We next prove axiom Symmetry 2. By axiom Symmetry 1 and axiom Symmetry 1 orthogonal twice, we
have that (r � s⊥)⊥ = (rs)⊥ � (r � s) for axiom Symmetry 2, it suffices by the defining property of the right
hand side to prove that

(rs⊥)⊥
(
(rs)⊥ � (r � s)

)
= (rs⊥)⊥(r � s⊥)⊥ = r⊥ = (rs)⊥(r � s)⊥

(rs⊥)⊥(r � s⊥)⊥ = (rs)⊥(r � s)⊥ .

But

(rs⊥)⊥(r � s⊥)⊥ = r⊥

= (rs)⊥(r � s)⊥

=
(
(rs)⊥(r � s)

)⊥(
(rs)⊥ � (r � s)

)
= (rs⊥)⊥

(
(rs)⊥ � (r � s)

)
by axiom Symmetry 1 orthogonal twice, then axiom Symmetry 1 twice. Left cancellativity yields (r � s⊥)⊥ =(
(rs)⊥ � (r � s)

)
as desired.

Finally, we prove axiom Symmetry 2 orthogonal. By axiom Symmetry 1 orthogonal and axiom Symmetry 1
twice, we have

r
(
(rs)⊥ � (r � s)⊥

)
=
(
(rs)⊥(r � s)⊥

)⊥(
(rs)⊥ � (r � s)⊥

)
= (rs)⊥(r � s) = rs⊥ ;

whence by left cancellativity that
(
(rs)⊥ � (r � s)⊥

)
= s⊥ as desired. �

D.4 Isomorphism of categories
Let EMonNormEMonNormEMonNorm be the category of effect monoids with normalisation and maps of effect algebras preserving
multiplication, TricoCancTricoCancTricoCanc be the category of left-cancellative tricocycloids in Set with double cancellation and
functions commuting with γ and v.

Theorem D.6 EMonNormEMonNormEMonNorm ∼= TricoCancTricoCancTricoCanc �

Proof
The constructions M 7→ M̊ and H 7→ H of Lemma ?? and Lemma ?? yield two functors:

˚(−) :=

EMonNormEMonNormEMonNorm −→ TricoCancTricoCancTricoCanc

M
f−→M ′ 7−−→ M̊

f|
M̊−−→ M̊ ′

and (−) :=

{
TricoCancTricoCancTricoCanc −→ EMonNormEMonNormEMonNorm

H
φ−→ H ′ 7−−→ H

φ−→ H ′

where φ|H := φ and φ(0) := 0, φ(1) := 1. Indeed:

• f |M̊ ∈ TricoCancTricoCancTricoCanc since it clearly preserves · and γ = (−)⊥, as 1 = f(1) = f(r > r⊥) = f(r) > f(r⊥) =⇒
f(r⊥) = f(r)⊥. Moreover, if (r, s) 6= (1, 1) (whence (f(r)f(s))⊥ 6= 0), due to (f(r)f(s))⊥f(r � s) =
(f(rs))⊥f(r�s) = f((rs)⊥)f(r�s) = f((rs)⊥(r�s)) = f(rs⊥) = f(r)f(s)⊥, it comes that f(r�s) = f(r)�f(s)
by Corollary D.1.

• φ ∈ EMonNormEMonNormEMonNorm as it preserves ·, 0 and 1. On top of that, if rs = a⊥ b = rs⊥, φ(a > b) = φ(r) =
φ(r)φ(s)>φ(r)φ(s)⊥ = φ(r)φ(s)>φ(r)φ(s⊥) = φ(a)>φ(b) by right distributivity, and due to φ preserving
multiplication and (−)⊥.
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• ˚(−) and (−) clearly preserve identity morphisms and composition.

Let us show that, for all M ∈ EMonNormEMonNormEMonNorm and H ∈ TricoCancTricoCancTricoCanc

• (M, ·,>, (−)⊥) = (M̊, ·′,>′, (−)⊥
′
): Clearly · = ·′ and (−)⊥ = (−)⊥

′ . Furthermore, let M̊ = M 3 a⊥ b. If
a> b = 0, then a> b⊥ 1, thus a⊥ 1 and b⊥ 1, whence a = b = 0.

Else,

{
1 6= (a> b)⊥⊥ a so ∃c; a = (a> b)c

1 6= (a> b)⊥⊥ b so ∃c′; a = (a> b)c′
by normalisation. Due to right distributivity, we then

have 0 6= a> b = (a> b)(c> c′), and by Corollary D.1, c> c′ = 1, i.e. c′ = c⊥. As a result, a>′ b := a> b.
• (H, ·, �, (−)⊥) = (H̊, ·′, �′, (−)⊥

′
): Clearly · = ·′ and (−)⊥ = (−)⊥

′ . For every r, s ∈ H = H̊, let us show
that r �′ s = r � s. But by definition of r �′ s: (rs)⊥(r �′ s) = rs⊥ = (rs)⊥(r � s). We conclude by
left-cancellativity.

�



E. Effectus-theoretic lemmas

E.1 Pullback lemmas

Reminder
To begin with, we recall well-known results about pullbacks:

Proposition E.1 — Pasting law for pullbacks In any category, a diagram of the form

A
f
//

h
��

B
g
//

i
��

C

j
��

D
k
// E

l
// F

where the right-hand inner square is a pullback is such that: the left-hand square is a pullback iff the
outer one is.

Proof

• =⇒: let D φ←− X
ψ−→ C be a cone of D lk−→ F

j←− C. The right pullback induces a unique cone map
X

u−→ B, which in turn, as the left square is a pullback, induces a unique cone map X
v−→ A. Thus,

φ = hv and gfv = gu = ψ, and any other cone morphism v′ : X → A equals v by unicity since hv′ = φ
and fv′ = u, as i(fv′) = khv′ = kφ and g(fv′) = ψ.

• ⇐=: let D φ←− X
ψ−→ B be a cone of D k−→ E

i←− B. The outer pullback induces a unique map X
u−→ A,

and the right pullback ensures that ψ is the terminal cone map from E
kφ←− X gψ−→ C to E i←− B g−→ C.

Thus u is a cone map for the left square, since hu = φ and fu = ψ, as i(fu) = khu = kφ = ψ and
g(fu) = (gf)u = gψ (by unicity of ψ). And it is unique since any other cone map for the left square
X

u′−→ A satisfies hu′ = φ and (gf)u′ = g(fu′) = gψ.

�

Proposition E.2 — Isomorphism square A diagram of the following form is a pullback

A′
g

∼=
//

f ′

��

A

f
��

B′
g′

∼=
// B

Proof
Let B′ φ←− X

ψ−→ A be a cone of B′ g
′
−→ B

f←− A. Any morphism of cone u : X → A′ is uniquely determined
by u = g−1ψ. On top of that, g−1h : X → A′ is indeed a morphism of cone, since g(g−1ψ) = ψ and
f ′(g−1ψ) = g′−1fψ = φ. �

On top of that, recall these well-known properties of the coproduct (the proofs are straightforward):

[gf1, gf2] = g[f1, f2] [g1f1, g2f2] = [g1, g2](f1+f2)
[f1, f2]κi = fi

(f1 + f2)κi = κifi
(g1 +g2)(f1 +f2) = g1f1 +g2f2

Now, we give a standalone exposition of a handful of effectus-theoretic lemmas by Bart Jacobs and Kenta
Cho (see [Jac15]) that we will make use of (with detailed proofs, which are often omitted in the literature). In
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what follows, we fix an effectus B.

Lemma E.1 In B, squares of the following form are pullbacks:

X
g

//

κ1

��

X

κ1

��

X +A
g+f

// X +B

Proof
First, note that the result holds for f = id:

X
g

//

κ1

��

X

κ1

��

X +A
g+1

// X +A

owing to Proposition E.1, Proposition E.2 and eq. (3.1a), as we have pullbacks:

A

g

))κ2

∼=
//

κ1

��

0 +A
1+g

//

!+1

��

0 +B
[!,1]

∼=
//

!+1

��

B

κ1

��

A+X

g+1

44∼=
// X +A

1+g
// X +B ∼=

// B +X

Now, modulo Proposition E.1, we get the desired pullback by pasting the previous f = id one and the
eq. (3.1b) one:

A
g

//

κ1

��

B

κ1

��

B

κ1

��

A+X
g+1

// B +X
1+f

// B + Y

�

Lemma E.2 In B, squares of the form:

(A+X) + 1
(g+1)+1

//

[B1,κ2]

��

(B +X) + 1

[B1,κ2]

��

A+ 1
g+1

// B + 1

(X +A) + 1
(1+g)+1

//

[B2,κ2]

��

(X +B) + 1

[B2,κ2]

��

A+ 1
g+1

// B + 1

(E.1a, E.1b)

are pullbacks.

Proof
Proof of E.1a: Let A+ 1

φ←− Z ψ−→ (B +X) + 1 be a cone of the cospan A+ 1
g+1−−→ B + 1

[B1,κ2]←−−−− (B+X)+1.
The following 3.1a-shaped pullback induces a unique cone morphism k : Z → A+ (X + 1):



E.1 Pullback lemmas 38

Z
◦ψ

**

φ

##

k

''

A+ (X + 1)
g+1

//

1+!

��

B + (X + 1)

[B1,κ2] ◦ = 1+!

��

A+ 1
g+1

// B + 1

It comes that k′ := ◦ k : Z → (A+X) + 1

Z

ψ

))

φ

��

k′ := ◦ k

%%

(A+X) + 1
(g+1)+1

//

[B1,κ2]

��

(B +X) + 1

[B1,κ2]

��

A+ 1
g+1

// B + 1

is a cone morphism for the original cospan, as

((g + 1) + 1)k′ = ((g + 1) + 1) k = (g + 1)k = ψ = ψ

and
[B1, κ2]k′ = [B1, κ2] k = (1+!)k = φ

On top of that, it is unique, since any other cone morphism k′′ : Z → (A+X)+1 is such that (1+!)
(

k′′
)

=

[B1, κ2]k′′ = φ and (g + 1)
(

k′′
)

= ((g + 1) + 1)k′′ = ψ, so that k′′ = k by unicity, and k′′ = k = k′′.

Proof of E.1b: this results from Proposition E.2, Proposition E.1, and diagrams of the form E.1a
being pullbacks, since any diagram of the form E.1b can be written:

(X +A) + 1

(1+g)+1

))
+1
∼=

//

[B2,κ2]

��

(A+X) + 1
(g+1)+1

//

[B1,κ2]

��

(B +X) + 1
+1
∼=

//

[B1,κ2]

��

(X +B) + 1

[B2,κ2]

��

A+ 1

g+1

33
1
∼=

// A+ 1
g+1

// B + 1
1
∼=

// B + 1

�
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Lemma E.3 For every X ∈ B and n ≥ 2, the maps [Bi, κ2] : X1 + · · · + Xn + 1 → Xi + 1, for 1 ≤ i ≤ n, are
jointly monic.

Proof

NB To avoid confusion, in this proof, we will denote Bi : X1 + · · ·+Xn → Xi + 1 more explicitly by BX1,...,Xn

i .

We use an analogous argument to the one due to Kenta Cho in [Jac15, Lemma 4.2.].
We proceed by induction.
Base case: Let’s first show the property for n = 2, i.e. the maps [BX,Y1 , κ2] : (X + Y ) + 1→ X + 1, [BX,Y2

, κ2] : (X + Y ) + 1→ Y + 1 are jointly monic. Let f, g : Z → (X + Y ) + 1 such that [BX,Yi , κ2] f = [BX,Yi , κ2] g,
for i = 1, 2.

Consider the following diagram:

Z
f

��g **
(X + Y ) + 1

[BX,Y
2 ,κ2]

%%

[BX,Y
1 ,κ2]

##

(!+1)+1
//

(1+!)+1

��

(1 + Y ) + 1

(1+!)+1

��

[B1,Y
2 ,κ2]

// Y + 1

!+1

��

(X + 1) + 1
(!+1)+1

//

[BX,1
1 ,κ2]

��

(1 + 1) + 1 //

��

1 + 1

X + 1
!+1

// 1 + 1

(E.2)

In Lemma E.2, E.1a (resp. E.1b) causes the lower left (resp. the upper right) square to a pullback. The
upper left is a pullback owing to Proposition E.2, eq. (3.1a), Proposition E.1, and the fact that it can be
written:

(X + Y ) + 1

(!+1)+1

))

∼=
//

(1+!)+1

��

X + (Y + 1)
!+1

//

1+(!+1)

��

1 + (Y + 1) ∼=
//

1+(!+1)

��

(1 + Y ) + 1

(1+!)+1

��

(X + 1) + 1

(!+1)+1

33∼=
// X + (1 + 1)

!+1
// 1 + (1 + 1) ∼=

// (1 + 1) + 1

From [BX,Yi , κ2] f = [BX,Yi , κ2] g, we get

(! + 1)[BX,Yi , κ2]︸ ︷︷ ︸
by E.2

=

 ◦ ((!+!) + 1) if i = 1

◦ ((!+!) + 1) if i = 2

f = (! + 1)[BX,Yi , κ2] g

Therefore, by joint monicity of and in the effectus B: ((!+!) + 1) f = ((!+!) + 1) g. It comes that
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• ((! + 1) + 1)((1+!) + 1) f = ((! + 1) + 1)((1+!) + 1) g results in ((1+!) + 1) f and ((1+!) + 1) g being cone
morphisms from

X + 1
[BX,Y

1 ,κ2] f = [BX,Y
1 ,κ2] g

←−−−−−−−−−−−−−−−− Z ((!+!)+1) f = ((!+!)+1) g−−−−−−−−−−−−−−−→ (1 + 1) + 1

to

X + 1
[BX,1

1 ,κ2]
←−−−−−− (X + 1) + 1

(!+1)+1−−−−−→ (1 + 1) + 1

so, by the lower left pullback in E.2, they are equal: ((1+!) + 1) f = ((1+!) + 1) g
• similarly, ((1+!) + 1)((! + 1) + 1) f = ((1+!) + 1)((! + 1) + 1) g results in ((! + 1) + 1) f and ((! + 1) + 1) g

being cone morphisms from

(1 + 1) + 1
((!+!)+1) f = ((!+!)+1) g←−−−−−−−−−−−−−−− Z

[BX,Y
2 ,κ2] f = [BX,Y

2 ,κ2] g
−−−−−−−−−−−−−−−−→ Y + 1

to

(1 + 1) + 1
(1+!)+1←−−−−− (1 + Y ) + 1

[B1,Y
2 ,κ2]

−−−−−→ Y + 1

so, by the upper right pullback in E.2, they are equal: ((! + 1) + 1) f = ((! + 1) + 1) g

Consequently, f and g are cone morphisms from

(X + 1) + 1
((1+!)+1) f=((1+!)+1) g←−−−−−−−−−−−−−−− Z ((!+1)+1) f=((!+1)+1) g−−−−−−−−−−−−−−−→ (1 + Y ) + 1

to
(X + 1) + 1

(1+!)+1←−−−−− (X + Y ) + 1
(!+1)+1−−−−−→ (1 + Y ) + 1

therefore, by the upper left pullback in E.2, they are equal: f = g.

Inductive step: Suppose the result for all k ≤ n; we will prove it for n + 1, i.e. the maps [BX1,...,Xn+1

i

, κ2] : X1 + · · ·+Xn+1 + 1→ Xi + 1, for 1 ≤ i ≤ n+ 1, are jointly monic.
Let f, g : Z → X1 + · · ·+Xn+1 + 1 such that [BX1,...,Xn+1

i , κ2] f = [BX1,...,Xn+1

i , κ2] g for 1 ≤ i ≤ n+ 1. Then:

∀i ≤ n, [BX1,...,Xn+1

i , κ2]︸ ︷︷ ︸
[B

X1,...,Xn
i ,κ2][B

X1+···+Xn,Xn+1
1 ,κ2]

f = [BX1,...,Xn+1

i , κ2] g

And by joint monicity of [BX1,...,Xn

i , κ2] (for 1 ≤ i ≤ n), it comes that

[BX1+···+Xn,Xn+1

1 , κ2] f = [BX1+···+Xn,Xn+1

1 , κ2] g

We conclude by joint monicity of [BX1+···+Xn,Xn+1

1 , κ2] and [BX1+···+Xn,Xn+1

2 , κ2] = [BX1,...,Xn+1

n+1 , κ2]. �

Lemma E.4 In B, the coprojections κ1 : X → X +A, κ2 : X → A+X are monic.

Proof
κ1 is monic due to Proposition E.2, eq. (3.1b), Proposition E.1, and the following pullback diagram:

A A

κ1

��

A

κ1

��

A

κ1

88

κ1

∼=
// A+ 0

1+!
// A+X
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From the previous outer pullback diagram, Proposition E.2, and Proposition E.1, we get that κ2 is monic
too:

A A

κ1

��

A

κ2

��

A

κ2

88

κ1 // A+X ∼=
// X +A

�

E.2 Effect algebra of predicates and Effect monoid of scal-
ars

Theorem E.5 In B, the predicates Pred(X) = HomB (X, 2) form an effect algebra. �

Proof
For all predicates p, q : X → 2, we define

• p⊥ q def⇐⇒ there exists b : 1→ 3 called a bound such that

{
b = p

b = q

• if b = p⊥ q = b, p> q := (∇+ id) b
• 0 := κ2 ! and 1 := κ1 !
• p⊥ := p

With these definitions, let us show that we have an effect algebra:

• PCM structure:

– p> q = q > p via the bound b, since = and =
– 0>p = p via the bound (κ2+1)p, since (κ2+1)p = [[κ1, κ2], κ2](κ2+1)p = [κ2, κ2]p = κ2∇p = κ2! = 0

and (κ2 + 1)p = [[κ2, κ1], κ2](κ2 + 1)p = [κ1, κ2]p = p.

– if

{
a = p⊥ q = a

b = (p> q)⊥ r = b
, let’s show that

{
q⊥ r
p⊥ (q > r)

and (p > q) > r = p > (q > r). Indeed,

consider the following 3.1a-shaped pullback:

X
a

**

b

$$

c

((

(1 + 1) + (1 + 1)
1+∇

//

∇+1

��

(1 + 1) + 1

∇+1

��

1 + (1 + 1)
1+∇

// 1 + 1

By putting

:= [κ1, κ2 + 1]

:= [[κ2, κ1 ◦ κ1], κ2 + 1]
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it comes that

c′ := X
c−→ (1 + 1) + (1 + 1) −→ (1 + 1) + 1 is a bound for q⊥ r

since

[[κ1, κ2], κ2][[κ2, κ1 ◦ κ1], κ2 + 1]c = [[[[κ1, κ2], κ2]κ2, [[κ1, κ2], κ2]κ1 ◦ κ1], [[κ1, κ2]κ2, κ2]]c

= [[κ2, [κ1, κ2] ◦ κ1], [κ2, κ2]]c = [[κ2, κ1], κ2[1, 1]︸︷︷︸
∇

]c

= [[κ2, κ1], κ2](1 +∇)c = [[κ2, κ1], κ2]b = q

[[κ2, κ1], κ2][[κ2, κ1 ◦ κ1], κ2 + 1]c = [[[[κ2, κ1], κ2]κ2, [[κ2, κ1], κ2]κ1 ◦ κ1], [[κ2, κ1]κ2, κ2]]c

= [[κ2, κ2], [κ1, κ2]]c = [κ2∇, 1]c

= [κ2, 1](∇+ 1)c = [κ2, 1] b = [κ2, 1][1 + κ1, κ2κ2]b

= [[κ2, 1](1 + κ1), [κ2, 1]κ2κ2]b

= [[κ2, κ1], κ2]b = r

c′′ := X
c−→ (1 + 1) + (1 + 1) −→ (1 + 1) + 1 is a bound for p⊥ (q > r)

since

[[κ1, κ2], κ2][κ1, κ2 + 1]c = [[[κ1, κ2], κ2]κ1, [[κ1, κ2]κ2, κ2]]c

= [[κ1, κ2], [κ2, κ2]]c = [[κ1, κ2], κ2∇]c

= [[κ1, κ2], κ2](1 +∇)c = [[κ1, κ2], κ2]a = p

[[κ2, κ1], κ2][κ1, κ2 + 1]c = [[[κ2, κ1], κ2]κ1, [[κ2, κ1]κ2, κ2]]c

= [[κ2, κ1], [κ1, κ2]]c

= [[κ2, [[κ1, κ1], κ2]κ1 ◦ κ1], [[κ1, κ1]κ2, κ2]]c

= [[[[κ1, κ1], κ2]κ2, [[κ1, κ1], κ2]κ1 ◦ κ1], [[κ1, κ1]κ2, κ2]]c

= [[[κ1, κ1], κ2][κ2, κ1 ◦ κ1], [[κ1, κ1], κ2](κ2 + 1)]c

= [[κ1, κ1], κ2][[κ2, κ1 ◦ κ1], κ2 + 1]c

= [κ1[id, id], κ2][[κ2, κ1 ◦ κ1], κ2 + 1]c

= [[κ2, κ1]κ2[id, id], κ2][[κ2, κ1 ◦ κ1], κ2 + 1]c

= [[κ2, κ1][κ2, κ2], κ2][[κ2, κ1 ◦ κ1], κ2 + 1]c

= [[κ2, κ1]κ2[id, id], κ2][[κ2, κ1 ◦ κ1], κ2 + 1]c

= [[κ2, κ1]κ2[id, id], κ2]c′

= [[κ2, κ1], κ2](∇+ 1)c′ = q > r

And

(p> q) > r = (∇+ 1)b = (∇+ 1)

[κ1◦κ1, κ2+id]︷︸︸︷
(∇+ 1)c

= (∇+ 1) [κ1 ◦ κ1 ◦ ∇, κ2 + id]c = [(∇+ 1)κ1 ◦ κ1 ◦ ∇, (∇+ 1)(κ2 + id)]c

= [κ1 ◦ ∇ ◦ κ1 ◦ ∇, (∇+ 1)(κ2 + id)]c = [κ1 ◦ 1 ◦ ∇, (∇+ 1)(κ2 + id)]c

= [κ1 ◦ 1 ◦ ∇, (∇+ 1)(κ2 + id)]c = [(∇+ 1)κ1, (∇+ 1)(κ2 + id)]c

= (∇+ 1) c = p> (q > r)

• Effect algebra structure:

– κ1 p is a bound for p⊥ p⊥
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– If b = p⊥ q = b, let us show that p> q = 1 := κ1! implies that q = p⊥ := p. Indeed, consider
the following pullback (by Lemma E.1):

X
b

))

!

!!

c

%%

1 + 1
κ1 //

∇
��

(1 + 1) + 1

∇+1

��

1 κ1

// 1 + 1

Then
q = b = κ1c = κ1c = b = p⊥

– if b = κ1! = 1⊥ p = b, let us show that p = 0 := κ2!. Indeed, by 3.1b, we have

X
b
..

!

##

!

&&

(1 + 1) + 1

%%

1
κ1 // 1 + (1 + 1)

1+∇
��

1 κ1

// 1 + 1

Then

b =

[κ1◦κ1, κ2+id]︷︸︸︷
κ1! = κ1 ◦ κ1!

and
p = b = [[κ2, κ1], κ2]κ1 ◦ κ1! = κ1!

�

Theorem E.6 In B, the scalars MB := Pred(1) = Stat(2) = HomB (1, 2) form an effect monoid. �

Proof
By Theorem E.5, they form an effect algebra. We define, for all r, s : 1→ 2:

r · s := 1
r−→ 2

[s,κ2]−−−→ 2

NB Note that, for a technical reason (this will leat to a neater formulation in terms of tricocycloids), we take the
definition set in [Jac11, Proposition 3.1.], which is dual to the one of [Jac15], but the result holds similarly in both
cases.

Let s, r, r′ : 1→ 2 be scalars such that b = r⊥ r′ = b.
Then
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c := 1
s−→ 1 + 1

b+id−−−→ 3 + 1
[id,κ2]−−−−→ 3 is a bound for s · r⊥ s · r′

since

[[κ1, κ2], κ2]c = [[κ1, κ2], κ2][id, κ2](b+ id)s

= [[[κ1, κ2], κ2], [[κ1, κ2], κ2]κ2](b+ id)s

= [[[κ1, κ2], κ2], κ2](b+ id)s

= [[[κ1, κ2], κ2]b, κ2]s = [r, κ2]s

[[κ2, κ1], κ2]c = [[κ1, κ2], κ2][id, κ2](b+ id)s

= [[[κ2, κ1], κ2], [[κ2, κ1], κ2]κ2](b+ id)s

= [[[κ2, κ1], κ2], κ2](b+ id)s

= [[[κ2, κ1], κ2]b, κ2]s = [r′, κ2]s

d := 1
b−→ 1 + 1

(s+s)+id−−−−−−→ 3 + 1
[[κ1+id,κ2+id],κ2]−−−−−−−−−−−→ 3 is a bound for r · s⊥ r′ · s

since

[[κ1, κ2], κ2]d = [[κ1, κ2], κ2][[κ1 + id, κ2 + id], κ2]((s+ s) + id)b

= [[[κ1, κ2], κ2][κ1 + id, κ2 + id], [[κ1, κ2], κ2]κ2]((s+ s) + id)b

= [[[[κ1, κ2], κ2](κ1 + id), [[κ1, κ2], κ2](κ2 + id)], κ2]((s+ s) + id)b

= [[[κ1, κ2], [κ2, κ2]], κ2]((s+ s) + id)b

= [[[κ1, κ2], [κ2, κ2]](s+ s), κ2]b

= [[[κ1, κ2]s, [κ2, κ2]s], κ2]b

= [[s, κ2 [id, id]s︸ ︷︷ ︸
= id : 1→1

], κ2]b

= [[s, κ2], κ2]b

= [[[s, κ2]κ1, [s, κ2]κ2], κ2]b

= [[s, κ2][κ1, κ2], [s, κ2]κ2]b

= [s, κ2][[κ1, κ2], κ2]b = [s, κ2]r

[[κ2, κ1], κ2]d = [[κ2, κ1], κ2][[κ1 + id, κ2 + id], κ2]((s+ s) + id)b

= [[[κ2, κ1], κ2][κ1 + id, κ2 + id], [[κ2, κ1], κ2]κ2]((s+ s) + id)b

= [[[[κ2, κ1], κ2](κ1 + id), [[κ2, κ1], κ2](κ2 + id)], κ2]((s+ s) + id)b

= [[[κ2, κ2], [κ1, κ2]], κ2]((s+ s) + id)b

= [[[κ2, κ2]s, [κ1, κ2]s], κ2]b

= [[κ2[id, id]s, s], κ2]b

= [[κ2, s], κ2]b

= [[[s, κ2]κ2, [s, κ2]κ1], κ2]b

= [[s, κ2][κ2, κ1], [s, κ2]κ2]b

= [s, κ2][[κ2, κ1], κ2]b = [s, κ2]r′

Moreover:
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(s · r) > (s · r′) = (∇+ 1)c

= (∇+ 1)[id, κ2](b+ id)s

= [(∇+ 1)b, (∇+ 1)κ2]s

= [r > r′, κ2]s = s · (r > r′)

and

(r · s) > (r′ · s) = (∇+ 1)[[κ1 + id, κ2 + id], κ2]((s+ s) + id)b

= (∇+ 1)[(∇+ 1)[κ1 + id, κ2 + id](s+ s), (∇+ 1)κ2]b

= [[(∇+ 1)(κ1 + id)s, (∇+ 1)(κ2 + id)s], κ2]b

= [[(∇κ1 + id)s, (∇κ2 + id)s], [s, κ2]κ2]b

= [[(id + id)s, (id + id)s], [s, κ2]κ2]b

= [[s, s], [s, κ2]κ2]b

= [s[id, id], [s, κ2]κ2]b

= [s, [s, κ2]κ2](∇+ 1)b

= [[s, κ2]κ1, [s, κ2]κ2](r > r′)

= [s, κ2](r > r′) = (r > r′) · s

�

Corollary E.7 In B, predicates Pred(X) := HomB (X, 2) form an effect module over MB.

Proof
Similarly to Theorem E.6, we define, for all p : X → 2, r : 1→ 2:

p · r := X
p−→ 2

[r,κ2]−−−→ 2

It comes that p · 1 = [κ1, κ2] p = p, (p · r) · s = [s, κ2][r, κ2] p = [

:= r·s︷ ︸︸ ︷
[s, κ2]r,

=κ2︷ ︸︸ ︷
[s, κ2]κ2] p = p · (r · s), and · being a

bihomomorphism of effect algebras is shown in the exact same way as in the proof of Theorem E.6. �

Lemma E.8 In B, morphisms of the form q : X → n (called n-tests) are in one-to-one correspondence with
predicates p1, . . . , pn : X → 2 summing to 1 (i.e. the pi’s are pairwise orthogonal and p1 > · · ·> pn = 1).

Proof
⇐=: If we have such predicates p1, . . . , pn with bound b : X → n+ 1, i.e.{

∀1 ≤ i ≤ n, [Bi, κ1] b = pi

(∇+ id) b = 1 := κ1!

then, by Lemma E.1:
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X

!

  

q

$$

b

''

n
κ1 //

!

��

n+ 1

∇+1 = !+id

��

1 κ1

// 1 + 1

The n-test q : X → n we obtain satisfies:

Bi q = [Bi, κ2]κ1q = [Bi, κ2] b = pi

It is uniquely determined, by joint monicity of ([Bi, κ2])1≤i≤n (Lemma E.3) and monicity of κ1 (Lemma E.4).
=⇒: Conversely, given an n-test q : X → n, by setting pi := Bi q = [Bi, κ2]κ1q : X → 2, it comes that κ1q is a
bound making the pi’s orthogonal, and

n

>
i=1

pi := (∇+ id)κ1q = κ1 ∇q︸︷︷︸
= !: X→1

= 1

�

E.3 Convex sets over an effect monoid
Definition E.1 — Category ConvM of convex sets over an effect monoid M

• Objects: Convex sets X ∈ ConvM over of M are given by a carrier set X closed under finite convex
combinations with coefficients in M : for all x1, . . . , xn ∈ X and all r1, . . . , rn ∈M pairwise orthogonal
and summing to 1, there exists

∑
1≤i≤n

ri |xi〉 ∈ X, where these convex combinations satisfy

1 |x〉 = x and
∑
i

ri

∣∣∣∑
j

si,j |xi,j〉
〉

=
∑
i,j

(ri · si,j) |xi,j〉

• Morphisms f : X → Y are function between the underlying sets preserving convex combination:
f
(∑

i
ri |xi〉

)
=
∑
i
ri |f(xi)〉

More abstractly, convex sets over M are straighforwardly seen to coincide with algebras of the distribution
monad DM (and Jacobs even define them as such in [Jac15]):

Proposition E.3
ConvM ∼= EM(DM )

Lemma E.9 If M is an effect monoid, one has the adjunction:

(EModEModEMod M )op

HomEModEModEMod M
(−,M)

++

> ConvM

HomConvM
(−,M)

ll
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Proof
Given a convex set X ∈ ConvM , we endow HomConvM

(X,M) with an effect monoid structure by defining
⊥, > and r · (−) (for all r ∈M ) pointwise, which yields a contravariant functor HomConvM

(−,M) acting on
morphisms by precomposition. In the other direction: if N is an effect module, HomEModEModEMod M

(N,M) is a convex
set, by setting

∑
i
rifi := x 7→>i ri · fi(x) (which remains a morphism of effect modules), and the action on

morphisms, likewise, is given by precomposition.
On top of that, we have the natural bijection

ΦN,X :

HomConvM

(
X, HomEModEModEMod M

(N,M)
) ∼=−→

HomEModEModEMod M (N,HomConvM
(X,M))︷ ︸︸ ︷

Hom(EModEModEMod M )op (HomConvM
(X,M), N)

X
φ−→ Hom (N,M) 7−−→ a 7→ (x 7→ φ(x)(a))

�

E.4 State and Predicate functors

Lemma E.10 — State functor. For all X ∈ B, the set of states Stat(X) := HomB (1, X) can be endowed
with the structure of a convex set over the effect monoid of scalars MB. This yields a functor

Stat : B −→ ConvMB

Proof
Let r1, . . . , rn ∈MB be n pairwise orthogonal scalars summing to 1, and ω1, . . . , ωn ∈ Stat(X). By Lemma E.8,
there exists a map q : 1→ n such that Bi q = ri for all 1 ≤ i ≤ n. We set

n∑
i=1

ri |ωi〉 := [ω1, . . . , ωn] q : 1→ X

We check that we do have a convex set. If ri, si,j : 1→ 2 respectively correspond to q : 1→ n and qi : 1→ mi by
Lemma E.8, and ω, ωi,j : 1→ X, for 1 ≤ i ≤ n, 1 ≤ j ≤ mi:

κ1 |ω〉 = [ω] id since B1 id = κ1

= ω

and ∑
i

ri

∣∣∣∑
j

si,j |ωi,j〉
〉

=
∑
i

ri |[ωi,1, . . . , ωi,mi ] qi〉

= [[ω1,1, . . . , ω1,m1 ] q1, . . . , [ωn,1, . . . , ωn,mn ] qn] q

= [[ω1,1, . . . , ω1,m1 ], . . . , [ωn,1, . . . , ωn,mn ]] (q1 + · · ·+ qn) q

Note that, due to ri = Bi q for all 1 ≤ i ≤ n, it comes that for all 1 ≤ j ≤ mi:
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ri · si,j = [si,j , κ2] ri

= [si,j , κ2][κ2, . . . , κ1, . . . , κ2] q where κ1is in position i, κ2 everywhere else
= [[si,j , κ2]κ2, . . . , [si,j , κ2]κ1, . . . , [si,j , κ2]κ2] q

= [κ2, . . . , si,j , . . . , κ2] q

= [κ2, . . . ,Bj qi, . . . , κ2] q

= [κ2 ! q1, . . . ,Bj qi, . . . , κ2 ! qn] q

= [ κ2!︸︷︷︸
: m1→2

, . . . ,Bj , . . . , κ2!︸︷︷︸
: mn→2

](q1 + · · ·+ qn) q

but, by denoting by N the sum m1 + · · · + mn (left-parenthesized as a coproduct of 1) and putting
ki,j := m1 + · · ·+mi−1 + j, we have:

[κ2!, . . . ,Bj , . . . , κ2!] = [Bki,j α1, . . . ,Bki,j αi, . . . ,Bki,j αn] = Bki,j [α1, . . . , αn]

where αl : ml → N maps ml to the corresponding summand of the codomain, for 1 ≤ l ≤ n, and
Bki,j : N → 2. As a consequence:

ri · si,j = Bki,j [α1, . . . , αn](q1 + · · ·+ qn) q︸ ︷︷ ︸
the unique N -test corresponding to the ri · si,j ’s via Lemma E.8

Therefore

∑
i

ri

∣∣∣∑
j

si,j |ωi,j〉
〉

= [[ω1,1, . . . , ω1,m1 ], . . . , [ωn,1, . . . , ωn,mn ]] (q1 + · · ·+ qn) q

= [[ω1,1, . . . , ω1,m1 , . . . , ωn,1, . . . , ωn,mn ]α1,

. . . , [ω1,1, . . . , ω1,m1 , . . . , ωn,1, . . . , ωn,mn ]αn] (q1 + · · ·+ qn) q

= [ω1,1, . . . , ω1,m1 , . . . , ωn,1, . . . , ωn,mn ] [α1, . . . , αn](q1 + · · ·+ qn) q

=
∑
i,j

(ri · si,j) |ωi,j〉

Finally, we easily check that postcomposition preserves convex sums, so that, for every f : X → Y , Stat(f)
is a morphism of convex spaces:

Stat(f)
( n∑
i=1

ri |ωi〉
)

= f [ω1, . . . , ωn] q

= [f ω1, . . . , f ωn] q

=

n∑
i=1

ri |Stat(f)(ωi)〉

�

Lemma E.11 — Predicate functor. For all X ∈ B, the set of predicates Pred(X) := HomB (X, 2) forms an
effect module over the effect monoid of scalars MB, yielding a functor

Pred: B −→ (EModEModEMod MB)op

Proof
By Corollary E.7, we already know that Pred(X) forms an effect module over MB. We thus require that
Pred(f) := (−) ◦ f : Pred(Y )→ Pred(X) be a map of effect modules, for every f : X → Y . It is indeed
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• a map of effect algebras: let p, q : X → 2 be orthogonal predicates via a bound b : X → 3. Then, clearly,
bf is a bound for pf and qf . It comes that

Pred(p) > Pred(q) = pf > qf = (∇+ id)bf = (p> q)f = Pred(p> q)

• a map preserving effect module structure: let p : X → 2 be a predicate, and r : 1→ 2 a scalar. Then

Pred(p · r) = [r, κ2] p f = Pred(p) · r

�

Definition E.2 — Logical validity If X ∈ B, for every state ω : 1→ X and predicate p : X → 2, we define the
logical validity as the scalar:

ω � p := p ◦ ω : 1→ 2

This seemingly simplistic definition has a surprising large array of varied interpretations, depending on
the effectus B. We give a brief account of some of them, a more detailed description can be found in [Cho+15;
Jac15]:

Examples in various effecti

Effectus B
Predicates X p−→ 2 State 1

ω−→ X Validity ω � p

Set Subsets p ⊆ X Elements ω ∈ X ω ∈ p

K`(DM ) Fuzzy predicate
p : X →M

Distributions/Convex
sums ω =

∑
x∈X

ω(x) |x〉
Expectation∑

x∈X
ω(x) · p(x)

K`(G) Measurable maps
p : X → [0, 1]

Probability measures
ω ∈ G(X)

Continuous expectation∫
x∈X

p dω

DLDLDLop Elements p ∈ X that
have a complement

Prime filters ω ⊆ X p ∈ ω

BABABAop Elements p ∈ X Ultrafilters ω ⊆ X p ∈ ω

RngRngRngop Idempotents p ∈ X Z-point ω : X → Z ω(p) ∈ {0, 1}

C∗C∗C∗PU
op p ∈ X; 0 ≤ p ≤ 1 ω : X → C 0 ≤ ω(p) ≤ 1

C∗C∗C∗PU
op

when X := B(H ) with
H finite-dimensional

Effects
p : H →H ; 0 ≤ p ≤ id

density matrix
ω ∈ DM(H )

Tr(ωp)

where

• G is the continuous distribution (Giry) monad
• BABABA (resp. DLDLDL) is the category of Boolean algebras (resp. distributive lattices)
• RngRngRng is the category of rings
• C∗C∗C∗PU is the category of C∗-algebras and positive unital maps
• if H is a complex Hilbert space, B(H ) denotes the continuous linear operators on H and if H is

finite-dimensional, DM(H ) are its density matrices (positive operators whose trace equals one)



F. C∗-algebras

Definition F.1 — Continuous and bounded linear maps Let f : X → Y be a linear map (sometimes called
operator, when X and Y are thought as vector spaces of maps) between two normed spaces (X, ‖ − ‖X) and
(Y, ‖ − ‖Y ).

• f is continuous if, for every x ∈ X and every sequence (xn), if xn −→ x (i.e. limn→∞ ‖xn − x‖X = 0)
then f(xn) −→ f(x)

• f is bounded if there exists a constant scalar λ such that ‖f(x)‖Y ≤ λ ‖x‖X for all x ∈ X. The smallest
such λ is denoted by ‖f‖ and is called the operator norm of f .

It is a well-known fact that a linear map between normed spaces is continuous iff it is bounded. Bounded
linear maps of (operator) norm lower or equal to 1 are referred to as short maps.

Definition F.2 — Banach spaces and Banach algebras Recall that Banach spaces are normed vector
spaces that are complete in the metric induced by the norm. They form a (closed monoidal) category BanshortBanshortBanshort,
with short linear maps as morphisms. If we require the linear operators be only bounded, the resulting
category is denoted by BanBanBan.
A (associative unital) Banach algebras is a monoid in BanshortBanshortBanshort, i.e. a Banach space endowed with a bilinear
associative multiplication satisfying

‖x · y‖ ≤ ‖x‖ ‖y‖

Banach spaces whose norm comes from a complex inner product are of paramount importance in a large
array of subfields of mathematics and physics [DM05]: ranging from thermodynamics and ergodic theory
to signal processing, Fourier analysis and, more importantly for us, quantum mechanics. These are called
Hilbert spaces, a name coined by Von Neumann in 1927, even though Hilbert was not the first in the know,
as evidenced by his asking � Dr. Von Neumann, I would like to know what is a Hilbert space? �, bewildered,
at the end of a lecture given by Von Neumann in Göttingen in 1929 (see [Dur+88, p. 330]).

Definition F.3 A (complex) Hilbert space H is

• a complex inner product vector space, i.e. a complex vector space equipped with an inner product
〈− | ·〉 : H × H → C (also written 〈−, ·〉) which is conjugate symmetric (〈x | y〉 = 〈y | x〉) positive
(〈x, x〉 ≥ 0) definite (〈x | x〉 = 0 =⇒ x = 0) and linear in its seconda component

• that is a Banach space for the norm ‖ − ‖ :=
√
〈− | −〉 induced by the inner product.

We denote by HilbHilbHilb (resp. HilbshortHilbshortHilbshort) the subcategory of BanBanBan (resp. BanshortBanshortBanshort) comprised of Hilbert spaces
and bounded linear maps.

aphysics convention, to be compatible with Dirac’s bra-ket notation

Definition F.4 A ∗-ring is a ring R together with an anti-involution, i.e. an involution (−)∗ : R → R
which is an antimorphism of rings: it preserves addition and 1, but reverses the order of multiplication
((xy)∗ = y∗x∗).

In a ∗-ring, fixed points of (−)∗ are called self-adjoint elements.

Definition F.5 A ∗-algebra is a ∗-ring (A, (−)∗) which is a unital associative algebra (i.e. a monoid in the
category of modules over the ring of scalars) over a commutative ∗-ring (R, ¯(−)) such that (−)∗ is antilinear
((rx)∗ = rx∗).
With ∗-homomorphisms (algebra homomorphisms preserving (−)∗), ∗-algebras form a category. A sub-∗-
algebra of a ∗-algebra A is a complex linear subspace of A containing the unit 1 ∈ A and closed under
multiplication and (−)∗.

Example F.1 — Bounded operators A key example of ∗-algebra is the set B(H ) ⊆ HomHilbHilbHilb (H ,H ) of
bounded operators on a Hilbert space. The complex vector space structure is defined pointwise, multiplic-
ation is composition, and anti-involution is given by taking adjoint operators: if T ∈ B(H ), the adjoint T ∗ is
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the unique operator such that 〈T (x) | y〉 = 〈x | T ∗(y)〉 for every x, y ∈ H (the existence and uniqueness of
which stems from Riesz-Fréchet representation theorem).

Definition F.6 A C∗-algebra is a Banach algebra A over C which is also a ∗-algebra (A, (−)∗) over (C, ¯(−))
satisfying the C∗ identity:

‖x∗x‖ = ‖x‖ ‖x∗‖

In a C∗-algebra A, elements x that can be written x = s∗s for some s ∈ A are said to be positive. This
endows A with a partial order given by x ≤ y ⇐⇒ x − y is positive. A linear map between C∗-algebras is
said to be unital if it preserves 1, positive if it sends positive elements to positive elements.

The previous definition of C∗-algebra is an abstraction of the original notion introduced by Irving Ezra
Segal in 1947 [Seg47] in the following more concrete form, nowadays referred to as C∗-algebra of operators:

Example F.2 — C∗-algebra of operators A C∗-algebra of operators on a Hilbert space H is a sub-∗-
algebra B of the Banach ∗-algebra of bounded linear operators B(H ) (the norm being the operator one)
which is closed in the norm topology (i.e. for every sequence (xn) ∈ BN and x ∈ B(H ), if limn→∞ ‖xn − x‖ = 0
then x ∈ B). It is the prototype of a C∗-algebra.

For more details about C∗-algebras, we refer the reader to [Arv98; Dix77; Sak98; TT03].



G. Effectuses v Effect Monoids/Tricocycloids

G.1 From an effectus to an effect monoid

Theorem G.1 — Scalars of an effectus with normalisation form an effect monoid with normalisation.. If
B is an effectus with normalisation, MB := HomB (1, 2) is an effect monoid with normalisation. �

Proof
By Theorem E.6, it is an effect monoid. We will show that is has normalisation. Let r, s : 1 → 2 such that

κ1 6= r⊥ s, i.e. there exists a bound b : 1 → 3 such that

r = 1
b−→ 3 −→ 2

s = 1
b−→ 3 −→ 2

(wlog, because the relation ⊥ is

symmetric). Let us show that

∃!s′. s = r⊥s′ := 1
r−→ 2 −→ 2

s′+1−−−→ 2 + 1 −→ 1 + 2
1+!−−→ 2

• Existence of s′: Set s′ := L1 b−→ 3 −→ 3M. Then

1
r−→ 2 −→ 2︸ ︷︷ ︸

1
b−→3−→2 = 1

b−→3−→3
!+1−−→2

s′+1−−−→ 2 + 1 −→ 1 + 2
1+!−−→ 2 =

↑
definition of s′

1
b−→ 3 −→ 3 −→ 1 + 2

1+!−−→ 2︸ ︷︷ ︸
3−→2

= s

• Uniqueness of s′: Let s′ be a scalar satisfying the normalisation property. Since

1
r−→ 2 −→ 2︸ ︷︷ ︸

1
b−→3−→3

!+1−−→2

s′′+1−−−→ 2 + 1 −→ 1 + 2
1+!−−→ 2︸ ︷︷ ︸

3−→2

= s = 1
b−→ 3 −→ 2︸ ︷︷ ︸

3−→3−→2

and owing to the maps and being jointly monic in B, it suffices to show that

1
b−→ 3 −→ 3

!+1−−→ 2
s′′+1−−−→ 3 −→ 2 = 1

b−→ 3 −→ 3 −→ 2

to conclude that b; ; (!+1); (s′′+1) = b; , hence s′′ = L1 b−→ 3 −→ 2M = s′ by uniqueness of normalisation
in an effectus. And it is the case, because

1
b−→ 3 −→ 3

!+1−−→ 2
s′′+1−−−→ 3 −→ 2︸ ︷︷ ︸

3−→3−→2 = 3−→3−→1+2
1+!−−→2

= 1
r−→ 2 −→ 2

s′′+1−−−→ 3 −→ 3 −→ 1 + 2
1+!−−→ 2

but the right-hand side is the scalar r⊥s′′⊥ Proposition D.1
= (r >

= s︷︸︸︷
r⊥s′′)⊥ = (r >

= s︷︸︸︷
r⊥s′)⊥ = r⊥s′⊥. Therefore

1
b−→ 3 −→ 3

!+1−−→ 2
s′′+1−−−→ 3 −→ 2 = 1

r−→ 2 −→ 2
s′+1−−−→ 3︸ ︷︷ ︸

1
b−→3−→3

!+1−−→2
s′+1−−−→3 = 1

b−→3−→3

3−→2︷ ︸︸ ︷
−→ 3 −→ 1 + 2

1+!−−→ 2

�
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G.2 Effectus and Kleisli category of the distribution monad
over the scalars

Definition G.1 — Pairwise orthogonality: n predicates p1, . . . , pn : X → 2 are said to be pairwise orthogonal
if there exists a common bound b : X → n+ 1 such that ∀1 ≤ i ≤ n, [Bi, κ2] b = pi. As it happens, their sum

is defined as
n

>
i=1

pi := (∇+ id) b

NB Such a bound b is unique by joint monicity of the family ([Bi, κ2])1≤i≤n (Lemma E.3).

Proposition G.1 In B, if n predicates p1, . . . , pn : X → 2 are pairwise orthogonal: for all s1, . . . , sn : 1→ 2, so
are the predicates p1 · s1, . . . , pn · sn : X → 2.

Proof
Let b : X → n+ 1 be a bound for p1, . . . , pn. Then c := [[κ1 + 1, . . . , κn + 1], κ2] (s1 + · · ·+ sn + 1) b : X → n+ 1
is a bound for p1 · s1, . . . , pn · sn: for all 1 ≤ i ≤ n

[Bi, κ2] c = [Bi, κ2][[κ1 + 1, . . . , κn + 1], κ2] (s1 + · · ·+ sn + 1) b

= [[Bi, κ2][κ1 + 1, . . . , κn + 1], [Bi, κ2]κ2] (s1 + · · ·+ sn + 1) b

= [[[Bi, κ2](κ1 + 1), . . . , [Bi, κ2](κn + 1)], κ2] (s1 + · · ·+ sn + 1) b

= [[[Bi κ1, κ2]s1, . . . , [Bi κn, κ2]sn], κ2] b where Bi κj =

{
κ2 if i 6= j

κ1 else

= [[[κ2, κ2]s1, . . . , [κ1, κ2]si, . . . , [κ2, κ2]sn], κ2] b

= [[κ2 [id, id]s1︸ ︷︷ ︸
= id : 1→1

, . . . , si, . . . , [id, id]sn︸ ︷︷ ︸
= id : 1→1

], κ2] b

= [[κ2, . . . , si, . . . , κ2], κ1] b

= [[[si, κ2]κ2, . . . , [si, κ2]κ1, . . . , [si, κ2]κ2], [si, κ2]κ2] b

= [si, κ2][Bi, κ2] b = [si, κ2] pi = pi · si

�
Definition G.2 — Distribution monad DM : The (discrete) distribution monad DM : Set→ Set over an effect
monoid M is given

• on objects X, by:

DM (X) :=
{
φ : X →M

∣∣∣ supp(φ) finite and >
x∈X

φ(x) = 1
}

=

{ n∑
i=1

ri |xi〉
∣∣∣ xi ∈ X, ri ∈M,>

i

ri = 1

}
where supp(φ) ⊆ X is the support of φ (set of elements x ∈ X such that φ(x) 6= 0). Such ‘mass’ maps φ
can be regarded as formal convex sums

∑
x∈X

φ(x) |x〉, where Dirac’s ket notation is nothing but syntactic

sugar drawing a distinction between elements x ∈ domφ and their occurrences in the formal sum. By
convention, in these formal convex sums, r1 |x〉+ r2 |x〉 will be identified with (r1 > r2)x.

• on morphisms f : X → Y by:

DM (f) :=


DM (X) −→ DM (Y )
n∑
i=1

ri |xi〉 7−−→
n∑
i=1

ri |f(xi)〉
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The unit ηX : X → DM (X) and multiplication µX : DM 2(X)→ DM (X) of the monad are defined as:

ηX(x) := 1 |x〉 µX

( n∑
i=1

ri |φi〉
)

:=
∑
x∈X

( n

>
i=1

ri · φi(x)
)
|x〉

NB The sum
n

>
i=1

ri · φi(x) is well defined thanks to Proposition G.1

Theorem G.2 Let B be an effectus whose objects are finite coproducts of 1. Then

B ∼= K`N(DMB)
�

Proof
In what follows, as HomB (m,n) ∼=

∏
1≤i≤m HomB (1, n) by universal property of the coproduct, we denote by

q1, . . . , qm : 1→ n the m morphisms associated by this isomorphism to a morphism q = [q1, . . . , qm] : m→ n.
We put

F :=


B −→ K`N(DMB)

n 7−−→ n

m
q−→ n 7−−→

{
m −→ DMB(n)

k 7−−→
∑

1≤i≤n
Bi q

k |i〉

Let us show that F is a fully faithful functor, i.e. – as it is clearly bijective-on-objects – an isomorphism.

• F is a functor:

– F preserves identities: for all n ∈ B,

F (n
id−→ n) = k 7→

∑
1≤i≤n

Bi idk |i〉 where idk = [id1, . . . , idn]κk = id κk = κk

= k 7→
∑

1≤i≤n
Bi κk |i〉 where Bi κk =

{
κ2 := 0 ∈MB if i 6= k

κ1 := 1 ∈MB else

= k 7→ 1 |k〉︸ ︷︷ ︸
= ηn

:= idn ∈ HomK̀ N(DMB
) (n, n)

– F preserves composition: showing that

F (m
q−→ n

q′−→ n′) := k 7→
∑

1≤j≤n′
Bj (q′q)k |j〉

is equal to

F (m
q−→ n); F (n

q′−→ n′) := m
Fq−−→ DMB(n)

DMB
(Fq′)

−−−−−−→ DMB
2(n′)

µn′−−→ DMB(n′)

= k 7→
∑

1≤i≤n
Bi q

k |i〉 7→
∑

1≤i≤n
Bi q

k
∣∣F (q′)i

〉︸ ︷︷ ︸
|∑1≤j≤n′Bjq

′i|j〉〉

7→
n′∑
j=1

( n

>
i=1

(Bi q
k) · (Bj q′i)

)
|j〉

amounts to showing that, for all k ∈ J1,mK, j ∈ J1, n′K: Bj (q′q)k =
n

>
i=1

(Bi qk) · (Bj q′i).
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This is indeed true, since:

n

>
i=1

(Bi q
k) · (Bj q′i) = (∇+ 1)

bound for (B1qk)·(Bjq
′1),...,(Bnqk)·(Bjq

′n) by Proposition G.1︷ ︸︸ ︷
[[κ1 + 1, . . . , κn + 1], κ2]

( ∑
1≤i≤n

Bj q
′i + 1

)
κ1q

k︸︷︷︸
bound for B1qk,...,Bnqk by E.8

= [[(∇+ 1)(κ1 + 1), . . . , (∇+ 1)(κn + 1)], (∇+ 1)κ2]
( ∑

1≤i≤n
Bj q

′i + 1
)
κ1q

k

= [[∇κ1︸︷︷︸
= id

+1, . . . ,∇κn︸︷︷︸
= id

+1], κ2]κ1

( ∑
1≤i≤n

Bj q
′i
)
qk

= [id, . . . , id]
( ∑

1≤i≤n
Bj q

′i
)
qk

= [Bj q
′1, . . . ,Bj q

′n]qk = Bj

= q′︷ ︸︸ ︷
[q′

1
, . . . , q′

n
]qk

= Bj ([q′q1, . . . , q′qm])k = Bj (q′q)k

• F is faithful: if q, u : m→ n and k 7→
∑

1≤i≤n Bi q
k |i〉 = Fq = Fu = k 7→

∑
1≤i≤n Bi u

k |i〉, then

∀k, i. [Bi, κ2]κ1q
k = Bi q

k = Bi u
k = [Bi, κ2]κ1u

k

which results in qk = uk for all k, by joint monicity of ([Bi, κ2])1≤i≤n (Lemma E.3) and monicity of κ1

(Lemma E.4), whence q = u.
• F is full: for all φ ∈ HomK̀ N(DMB

) (m,n), φ is of the form

φ :

{
m −→ DMB(n)

k 7−−→
∑

1≤i≤n
rk,i |i〉

where the rk,i’s are pairwise orthogonal. By Lemma E.8, for all 1 ≤ k ≤ m, there exists a map qk : 1→ n
such that Bi qk = rk,i for all 1 ≤ i ≤ n. We set q := [q1, . . . , qm] : m→ n, so that qk = qk for all 1 ≤ k ≤ m.
Consequently, φ = Fq.

�



H. Geometric Interpretation

(0, 1) being a symmetric tricocoycloid in Set: geometric interpretation

D

 A

E

r*⋅DC

x ⋅ AE ?

s

       B C

s*

r⋅DC

y ?

(0,1)

x’

β’  α

α’γ

β

Proof
In the symmetric tricocycloid (0, 1) ∈ Set,

v :

{
(0, 1)2 −→ (0, 1)2

(r, s) 7−−→ (r · s, r � s) = (rs, rs∗

(rs)∗ )

where (−)∗ := 1− (−) = (−)⊥ = γ, turns the formal convex combination

r
(
s |A〉+ s∗ |B〉

)
+ r∗ |C〉

into the convex combination

rs |A〉+ (rs)∗
( rs∗

(rs)∗
|B〉+

r∗

(rs)∗
|C〉

)
= r · s |A〉+ (r · s)⊥

(
(r � s) |B〉+ (r � s)⊥ |C〉

)
This can be shown geometrically: in the above drawing, where ABC is equilateral (each side of which

may be thought of as a copy of H = (0, 1)), v turns (r, s) into (x, y).
Indeed, first note that:

DC =
√
s+ (1− s)2 x′ =

√
(rDC)2 + 1− 2rDC

√
1− ζ2

ζ := sinα =

√
3(1− s)

2 DC︸︷︷︸
=
√
s+(1−s)2

ζ2 =
3(1− s)2

4(s+ (1− s)2)

Therefore, we first want to show that

y =
2 r ·DC√

1− ζ2 +
√

3ζ − (
√

3(1− ζ2)− ζ)
(rDC)2) + x′2 − 1

2x′rDCζ/x′

?
=
r(1− s)
1− rs
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y/r =
2DC

(
√

1− ζ2 +
√

3 · ζ)− (
√

3(1− ζ2)− ζ)

2(rDC)2−2rDC
√

1−ζ2︷ ︸︸ ︷
((rDC)2 + x′2 − 1)

2r ·DC · ζ

=

=
√

3(1−s)︷ ︸︸ ︷
2ζ(DC)

ζ(
√

1− ζ2 +
√

3ζ)− (
√

3(1− ζ2)− ζ)(rDC −
√

1− ζ2)

But the denominator in the last expression is equal to

ζ
√

1− ζ2 +
√

3ζ2 − rDC
√

3(1− ζ2) +

√
3

2
(1− s)r +

√
3(1− ζ2)− ζ

√
1− ζ2

= 1 − rs +
rs

2
+
r

2
− rDC

√
1− ζ2 (H.1)

and we claim that

rs

2
+
r

2
− rDC

√
1− ζ2 = 0

Indeed:

r(1 + s) = 2rDC
√

1− ζ2

⇐⇒ 1 + 2s+ s2 = 4(DC)2(1− ζ2)︸ ︷︷ ︸
= 4(DC)2−3(1−s)2

⇐⇒ 1 + 2s+ s2 = 4s+ (1− s)2

and the last equality is clearly true.
Secondly, let us show that x = rs.

Note that AE√
3/2

= 1
sin γ – whence AE =

√
3/2

sin γ – and x ·AE =
sinα′ rDC

sin γ
.

As a result:

x ·AE ?
= rs ·AE

⇐⇒

1
2

(√
3(1−ζ2)−ζ

)︷ ︸︸ ︷
sinα′ · r ·DC

sin γ
= rs ·

√
3/2

sin γ

⇐⇒ (
√

1− ζ2 − ζ√
3

)DC = s

⇐⇒ DC
√

1− ζ2 − (1− s)
2

= s

⇐⇒ 2DC
√

1− ζ2 − 1 = s

⇐⇒ 4(DC)2(1− ζ2)︸ ︷︷ ︸
4(s+(1−s)2)−3(1−s)2=4s+(1−s)2

= (s+ 1)2

�



I. Implementation

I.1 Why3 proof of the “Tricocyloid to Effect Monoid” direc-
tion

1 module SymmetricTricocycloid
2
3 type t
4 function (++) t t : t
5 function ( *) t t : t
6 function (#_) t : t
7 function v_inv t t : (t, t)
8
9 clone export algebra.Assoc with type t = t,

↪→ function op = ( *), axiom Assoc
10
11 axiom Involution : forall r: t. #(#r) = r
12 axiom Inverse_1 : forall r s: t. v_inv (r*s) (r

↪→ ++s) = (r, s)
13 axiom Inverse_2 : forall r s: t. let r’, s’ =

↪→ v_inv r s in r’*s’ = r && r’++s’ = s
14
15 axiom Symmetry_1 : forall r s: t. #(r*s) * (r ++

↪→ s) = r * #s
16 axiom Symmetry_2 : forall r s: t. #(r*s) ++ (r

↪→ ++ s) = #(r ++ #s)
17
18 lemma Orthogonal_Symmetry_1: forall r s:t. #(r*

↪→ s) * #(r ++ s) = #r
19 lemma Orthogonal_Symmetry_2: forall r s:t. #(r*

↪→ s) ++ #(r ++ s) = #s
20
21 axiom Tricocycle_1 : forall r s t: t. (r ++ s*t)

↪→ * (s ++ t) = r*s ++ t
22 axiom Tricocycle_2 : forall r s t: t. (r ++ s*t)

↪→ ++ (s ++ t) = r ++ s
23
24 lemma Orthogonal_Tricocycle_1: forall r s t:t.

↪→ (r ++ s*t) * #(s ++ t) = #(r*s ++ t) * (r
↪→ ++ s)

25 lemma Orthogonal_Tricocycle_2: forall r s t:t.
↪→ (r ++ s*t) ++ #(s ++ t) = #(#(r*s ++ t) ++
↪→ (r ++ s))

26 end
27
28 module SymmetricTricocycloidLeftcancellative
29
30 clone export SymmetricTricocycloid with axiom .
31 axiom Left_cancellation : forall r s s’: t. r*s

↪→ = r*s’ → s = s’
32 end
33
34 module SymmetricTricocycloidDoubleCancellation
35
36 clone export

↪→ SymmetricTricocycloidLeftcancellative with
↪→ axiom .

37 axiom Double_cancellation : forall r s r’ s’: t.
↪→

38 r*s = s’*r’ ∧ r * #s = #s’ * r’ → r = r’
39
40 end
41
42
43 module PCM
44
45 type t
46 constant zero : t

47 function (+) t t : t
48 predicate (˜) t t
49
50 axiom Commutativity_sum : forall a b: t. a ˜ b
51 → b ˜ a ∧ a +

↪→ b = b + a
52 axiom Associativity_sum : forall a b c: t. a ˜

↪→ b ∧ (a + b) ˜ c
53 → b ˜ c ∧

↪→ a ˜ (b + c) ∧ (a + b) + c = a + (b + c)
54 axiom Unit_law_sum : forall a: t. zero ˜ a ∧

↪→ zero + a = a
55 end
56
57
58 module PCM_endomorphism
59
60 type t
61 constant zero : t
62 function (+) t t : t
63 predicate (˜) t t
64
65 function f t : t
66
67 axiom Preservation_sum : forall a b: t. a ˜ b →

↪→ f a ˜ f b ∧ f(a + b) = f a + f b
68 axiom Preservation_zero : f zero = zero
69 end
70
71
72 module EffectAlgebra
73
74 clone export PCM with axiom .
75
76 function (#_) t : t
77 constant one : t = #zero
78
79 axiom Orthocomplement_existence : forall a: t.

↪→ a ˜ #a ∧ a + #a = one
80 axiom Orthocomplement_uniqueness : forall a b:

↪→ t. a ˜ b ∧ a + b = one → b = #a
81
82 axiom Orthocomplement_one_uniqueness : forall a:

↪→ t. a ˜ one → a = zero
83 end
84
85
86 module EffectAlgebra_biendomorphism
87
88 clone export EffectAlgebra with axiom .
89
90 function g t t : t
91
92 axiom Preservation_one : g one one = one
93
94 (* homomorphism of PCM *)
95 axiom Preservation_sum_1 : forall a a’ b: t.
96 a ˜ a’ → g a b ˜ g a’ b ∧ g (a + a’) b = g a

↪→ b + g a’ b
97 axiom Preservation_zero_1 : forall a: t. g zero

↪→ a = zero
98
99 axiom Preservation_sum_2 : forall a b b’: t.
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100 b ˜ b’ → g a b ˜ g a b’ ∧ g a (b + b’) = g a
↪→ b + g a b’

101
102 axiom Preservation_zero_2 : forall a: t. g a

↪→ zero = zero
103
104 end
105
106
107 module EffectMonoid
108
109 type t
110 function ( *) t t : t
111
112 clone export EffectAlgebra_biendomorphism with

↪→ type t = t, function g = ( *), axiom .
113
114 axiom Unit_law_left_mul : forall a: t. one * a

↪→ = a
115 axiom Unit_law_right_mul : forall a: t. a * one

↪→ = a
116
117 axiom Associativity_mul : forall a b c: t. a *

↪→ (b * c) = (a * b) * c
118
119 end
120
121
122 module EffectMonoidNormalisation
123
124 clone export EffectMonoid with axiom .
125
126 axiom Normalisation : forall a b: t. a 6= one ∧

↪→ a ˜ b → exists c. ( b = #a * c ∧ (forall
↪→ d: t. b = #a * d → d = c))

127
128
129 lemma Leftcancellation_nonzero : forall a b c:

↪→ t. a 6= zero ∧ a * b = a * c → b = c
130 end
131
132
133 theory Tricocycloid_to_EffectMonoidNormalisation
134
135 use SymmetricTricocycloidDoubleCancellation
136
137 type t’ = Trico t | Zero | One
138
139 let ghost function (+++) (a b: t’) : t’ =
140 match a, b with
141 | One, _ → One
142 (* keeping the function pure, but One +++

↪→ One may be considered undefined *)
143 | Zero, _ → Zero
144 | _, One → Zero
145 | r’, Zero → r’
146 | Trico r, Trico s → Trico (r ++ s)

147 end
148
149 let ghost function ( **) (a b: t’) : t’ =
150 match a, b with
151 | Zero, _ | _, Zero → Zero
152 | r’, One | One, r’ → r’
153 | Trico r, Trico s → Trico (r*s)
154 end
155
156 let ghost function (#:_) (a: t’) : t’ =
157 match a with
158 | Zero → One
159 | One → Zero
160 | Trico r → Trico (#r)
161 end
162
163 (* [...] ELLIPSIS: CF. THE GITHUB REPO TO SEE

↪→ THE FULL IMPLEMENTATION *)
164
165 function norm t’ t’ : (t’, t’)
166
167 axiom norm_0_x : forall x: t’. x 6= Zero → norm

↪→ Zero x = (x, Zero)
168 axiom norm_x_0 : forall x: t’. norm x Zero = (x,

↪→ One)
169 axiom norm_rs : forall r s: t’. r 6= Zero →

↪→ norm (r ** s) (r ** #:s) = (r, s)
170
171 predicate (˜) (a b: t’) =
172 let r, s = norm a b in a = r ** s ∧ b = r **

↪→ #:s
173
174 (* [...] ELLIPSIS: CF. THE GITHUB REPO TO SEE

↪→ THE FULL IMPLEMENTATION *)
175
176 clone export EffectMonoidNormalisation
177 with type t = t’,
178 constant zero = Zero,
179 function (+) = (+),
180 predicate (˜) = (˜),
181 function (#_) = (#:_),
182 function ( *) = ( **),
183 goal Commutativity_sum,
184 goal Associativity_sum,
185 goal Unit_law_sum,
186 goal Orthocomplement_existence,
187 goal Orthocomplement_uniqueness,
188 goal Preservation_zero_1,
189 goal Preservation_sum_2,
190 goal Preservation_zero_2,
191 goal Unit_law_left_mul,
192 goal Unit_law_right_mul,
193 goal Associativity_mul,
194 goal Normalisation,
195 goal Preservation_sum_1
196
197 end
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