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1. Signal Detection Theory

Consider the two-alternative-choice motion discrimination task in which the subject has to determine the
direction of motion of a stimulus. As ideal observers, we obtain access to two neurons with opposite tuning (so
that e.g. neuron 1 will fire more strongly than neuron 2 if the motion stimulus moves leftwards, and neuron 2
more strongly than neuron 1 if the motion stimulus moves rightwards).

If the motion was

to the left ( ): then the firing rates of neuron 1 follow the distribution  and those of neuron 2
the distribution 
to the right ( ): then neuron 1 fires according to  and neuron 2 according to 

a) Assume that the distribution  and  are Gaussian and sketch
the above scenario (two neurons, two possible stimuli)

For instance, if the firing rates range from  to  Hz, and if the mean and standard deviation  (resp. 
) of  (resp. ) are set to be:

to resemble the example seen in class, then we have:
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Figure a.1. - Plot of the first neuron's response

Figure a.2. - Plot of the second neuron's response

b) In class, we introduced the two functions

Sketch these functions. What do they indicate in the present context?

{α(z) ≝ p(r ≥ z ∣ −)
β(z) ≝ p(r ≥ z ∣ +)



Figure b.1. - False alarm rate  as a function of the decision threshold 

Figure b.2. - Hit rate  as a function of the decision threshold 

Let us call preferred direction of a neuron the left (resp. right) one for neuron 1 (resp. for neuron 2): that is, the
direction that causes the neuron to fire more strongly than the other.

The probability  for the decision threshold  is a false alarm rate, i.e.
the probability that an ideal observer, observing neuron , would mistakenly make the decision that
the motion that caused neuron  to fire above the threshold  was to the preferred direction of neuron , while in
fact it was in the other direction.

The probability  for the decision threshold  is a hit rate, i.e. the
probability that an ideal observer, observing neuron , would rightly make the decision that the motion
that caused neuron  to fire above the threshold  was to the preferred direction of neuron , while it was indeed
in this direction.
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c) Compute the derivatives  and .

And likewise:

d) Let us call  the firing rate of neuron . What is the probability 
?

Strictly speaking, there is no such thing as a preferred direction for the pair , so there may be a problem
of definition when it comes to . Based on the introductory part of the problem statement, let us
assume that the preferred direction for  is the left one.

In this case:

The  part is due to the events being assumed to be conditionally independent given any fixed stimulus, as seen in
class.

Similarly: if the preferred direction of the pair  is assumed to be the right one, then:

e) Advanced: Let’s assume an ideal observer makes the decision “motion was
leftwards” whenever . How often will this observer be correct, assuming
that leftwards and rightwards motion occur equally often? Show that the result
corresponds to the area under the ROC-curve.

From now on, in compliance with the problem statement, let us assume that the preferred direction for 
 is the left one.

We are asked to compute , that is:
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And as

we conclude, by u-substitution, that:

which is the area under the Receiver Operating Characteristic curve.

2. Reinforcement Learning Theory

In the lecture, we learned that the reinforcement learning framework allows an agent to learn the optimal
sequence of choices in a given envrionment (optimal in the sense that the agent will gather the maximum
amount of reward).

This framework is very powerful and could in principle learn many things (e.g. playing chess), even if this may
often be impractical.

What are environmental scenarios which this framework, as presented in the
lecture, will never be able to learn? If you can think of a scenario, try to
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illustrate it with a simple example.

Reinforcement Learning (RL) is a simplistic - yet effective - framework which has its fair share of limitations. Let
us examine some of them.

Curse of dimensionality

One of the most obvious limitation is the curse of dimensionality, as we saw in class, which forces us to go from
model-free learning to model-based one. The problem is that there’s no systematic or easy way to come up with
a good model that will appropriately generalize: recall the chess linear model example mentioned in the course
slides (slide 50), which can actually learn to play chess, but is very bad at doing so. The situation is even worse
for the real world examples we deal with in neuroscience, which are far more complex and involve far more
parameters than a board game, if we were to model them faithfully.

Markovian/Memorylessness property

Another drawback of the RL framework is the Markovian/memorylessness assumption it is based upon: the next
state depend only on the current state and taken action, which is a serious limitation. Indeed, there are
countless examples where this assumption does not hold, especially whenever the next state may depend on all
the previous taken actions/visited states.

To come back to the “rat in maze” example we saw in class: let us assume the maze has paths of different
lengths. The rat may want to return back to its mischief afterwards, and thus may take into account the length
of the path taken so far (not to venture too deep into the maze), in which case the next state would depend on
all the previously visited states.

Discrete states/actions

Another limitation is that we the resort to a discrete set of state and actions. With continuous states and action,
in the maze example:

states may not just be intersections in the maze (discrete), but any point (to look for food at this spot)
in a pathway (continuous)
an action the rat may take may be for example "going in this or that direction for  meters"

Reward function

The reward function (on which the state value function is based) is the cornerstone of the RL framework.
However, in practice, how to quantify and even define the reward may not be all that clear. In the maze example,
the reward may be thought of as the amount of food found at this or that spot, but the rat may also take into
account the attractiveness of spots as potential shelters: in which case: how to faithfully define/quantify the
reward?

One single agent in a static envrionment

Finally, it can be stressed that in our RL framework: the agent

x ∈ R+

https://lnc2.dec.ens.fr/sites/cognition.ens.fr/files/2018-03/DefineASetOfStates.pdf


doesn’t interact with other agents
“has the upper hand” with respect to its envrionment, as it is the one to take action in the
environment, which can then be described as static (in real world examples: the environment may be
“protean” and change according to parameters that don’t depend only on the agent’s actions)

In our maze example again: the rat may encounter other rats (which may then cause fights, collaboration, etc…),
and if the maze is thought of as the sewers for instance: certain spots may become more or less
dangerous/unappealing according to different varying factors (luminosity, level of water, etc…).


