
Homework Assignment: Advanced Complexity
Younesse Kaddar

PDF Version
http://younesse.net/Complexity/AssignmentComplexity

1. , a new complexity class.

1.

The underbraced sets are in  since:

and the unconstrained boolean expression only requires the Turing machine to check that it is a syntactically well-formed boolean formula.

2.

Indeed: The non-deterministic Turing machine which, for each input :

guesses an integer 
returns true if  is a divisor of , false otherwise

recognizes in non-deterministic polynomial time , so that .

3.
As  is written with  digits in binary:

But any integer in  can be decomposed into a sum of the form , where  (decomposition in base ).

So

∇NP
∇NP ≝ { ∖ ∣ , ∈ NP}L1 L2 L1 L2

YesNoSAT ≝ {(F ,G) ∣ F ∈ SAT,G ∉ SAT}

= ∖{(F ,G) { }∣

∣
∣

F ∈ SAT

G any boolean expression  
∈ NP

{(F ,G) { }∣

∣
∣

F  any boolean expression
G ∈ SAT  

∈ NP

∈ ∇NP

NP

SAT ∈ NP

Prime ∈ coNP = { ∖ ∣ ∈ NP} ⊆ ∇NPAll 
∈NP: language associated with the problem that accepts everything

L2 L2

n ∈ N

d ∈ [[2,n − 1]]

d n

NPPrime
¯ ¯¯̄¯̄ ¯̄ ¯̄ ¯̄  

complement of Prime

∈
hence

Prime ∈ coNP

2k k + 1

| |en = +∑
k=0

n−1

(k + 1) + (k + 2) + 1  
length of  ∪2k 2k+1

n − 1  
number of "+"

= 2 k + 4n + n − 1∑
k=0

n−1

= 2 + 5n − 1
n(n − 1)

2
= n(n + 4) − 1

V ( )en = { ( ) ∈ {1, 2 }∑
k=0

n−1

εk2k
∣

∣
∣ εk }n

= { + ( − 1) ( ∈ {1, 2 }∑
k=0

n−1

2k ∑
k=0

n−1

εk 2k
∣

∣
∣ εk)0≤k≤n−1 }n

= { − 1 + ( ∈ {0, 1 }2n ∑
k=0

n−1

ε′
k2k

∣

∣
∣ ε′

k)0≤k≤n−1 }n

[[0, − 1]]2n ∑
k=0

n−1

ε′
k2k ( ∈ {0, 1ε′

k)0≤k≤n−1 }n 2

V ( ) = [[ − 1, − 2]]en 2n 2n+1

http://younesse.net/assets/Complexity_assignment.pdf
http://younesse.net/Complexity/AssignmentComplexity


4.

Indeed:

Lemma:  is closed under union (resp. intersection).

Proof: Let  respectively recognized by .

Let  be the Turing machine which, on input :

1. runs  on  and accepts (resp. rejects) if  is (resp. is not) accepted
2. runs  on  and accepts (resp. rejects) if  is (resp. is not) accepted
3. otherwise rejects (resp. accepts).

 clearly recognizes  (resp. ), and runs in polynomial time, since  and  do. So the result follows.

 :
The non-deterministic Turing machine guesses an element of  and checks if it is equal to .
The “guessing” process can be recursively specified as follows:

for a NE of the form : it picks 
for a NE of the form : it guesses an element in , another one in  and sums both of them
for a NE of the form : it non-deterministically chooses between  and  and guesses an element in it

Likewise, 
As  is closed under union (lemma), 

5.

Indeed:

The first set is in : one runs the Turing machine  recognizing  on each  and accepts if and only if all of them are satisfiable: this is done in polynomial
time, since a linear number of executions of  (running in polynomial time) are performed.

6.
Let  be the language associated with the problem that accepts everything,  the empty language (they are in : the machines immediately accept
or reject). Then

so

7.
For all  (where ):

Indeed:

, since  is closed under intersection (cf. lemma, question 4)
, since  is closed under union (cf. same lemma)

2. A few simple -complete problems

8.

IsolVal = ∖{(e,n)| n ∈ V (e)}  
∈ NP

( {(e,n)| n − 1 ∈ V (e)} ∪ {(e,n)| n + 1 ∈ V (e)})  
∈ NP

∈ ∇NP

NP

, ∈ NPL1 L2 ,M1 M2

M w

M1 w w

M2 w w

M ∪L1 L2 ∩L1 L2 M1 M2

{(e,n) ∣ n ∈ V (e)} ∈ NP

V (e) n

m m

+e1 e2 e1 e2

∪e1 e2 e1 e2

{(e,n) ∣ n − 1 ∈ V (e)}, {(e,n) ∣ n + 1 ∈ V (e)} ∈ NP

NP {(e,n) ∣ n − 1 ∈ V (e)} ∪ {(e,n) ∣ n + 1 ∈ V (e)} ∈ NP

AlmostSAT = ∖{S ≝ ∧ ⋯ ∧ | S∖ ∈ SAT}C1 Cn Ci  
∈ NP

{S ≝ ∧ ⋯ ∧ | S ∈ SAT}C1 Cn  
∈ NP

∈ ∇NP

NP M SAT S∖Ci

M

All ∈ NP ∅ ∈ NP NP

{NP = { ∖∅ ∣ ∈ NP} ⊆ ∇NPL1 L1

coNP = {All∖ ∣ ∈ NP} ⊆ ∇NPL2 L2

NP ∪ coNP ⊆ ∇NP

L ≝ ∖ , ≝ ∖ ∈ ∇NPL1 L2 L′ L′
1 L′

2 , , , ∈ NPL1 L2 L′
1 L′

2

L ∩ = ( ∩ )∖( ∪ ) ∈ ∇NPL′ L1 L2 L′
1 L′

2

∩ ∈ NPL1 L2 NP

∪ ∈ NPL′
1 L′

2 NP

∇NP



As  (question 1), it suffices to show that  is -hard.

For all  (where ): as  is -complete (Cook-Levin theorem), there exist two logspace reductions  such that:

Let

Then for all :

Moreover,  runs clearly in logspace, as  and  do.

So

and

 is -complete.

9.

:

Indeed:

: guess a set  of vertices, check if , then check whether all vertices in  are connected by an edge (it take quadratic non-deterministic time,
hence polynomial non-deterministic time). Analogously, .

 is -hard:
Let us first show that  is -hard (it will come in handy at questions 16 and 17).

Lemma: There exists a logspace reduction  from  to  such that for all 3-CNF boolean formula  with  clauses:

In particular, , so  is -hard

We will use the same reduction as the one seen last year (http://younesse.net/Calculabilite/TD7/ Réductions> EX1 and EX3):

For each clause  of  literals in , we add  nodes , each one labeled with a literal from . We don’t connect any nodes stemming from the same clause.

Then, we put edges between each pair of nodes coming from distinct clauses, except for the pairs of the form , so that any clique in  is of size smaller (or
equal) than .

One easily sees that:

if  is satisified by a valuation : the clique comprised, for each clause , of one vertex corresponding to one satisfied literal, is of size  (and it thereby maximal)
if  has a largest clique  of size : then  has exactly one node from each clause (at most one since any nodes from a same clause are not connected, and one
because it is of size ). Then by setting the corresponding literals to true (and everything else to false), the resulting valuation satifies , since each clause has a
satisfied literal.

Then, to ensure that if  is unsatisfied, the largest clique is of size : we modify  by artificially taking the union with a new clique of size 

NB: the reduction is clearly logspace, since:

 can be computed by reading the input, with one counter
one can build  by scanning through each clause, with a constant number of pointers

-hardness

YesNoSAT ∈ ∇NP YesNoSAT ∇NP

L ≝ ∖ ∈ ∇NPL1 L2 , , , ∈ NPL1 L2 L′
1 L′

2 SAT NP ,r1 r2

{ ∀w, w ∈ ⟺ (w) ∈ SATL1 r1

∀w, w ∈ ⟺ (w) ∈ SATL2 r2

r ≝ w⟼ ( (w), (w))r1 r2

w

w ∈ ∖L1 L2⟺ w ∈ ∧ w ∉L1 L2

⟺ (w) ∈ SAT ∧ (w) ∉ SATr1 r2

⟺ ( (w), (w)) ∈ YesNoSATr1 r2

r r1 r2

∀L ∈ ∇NP, L YesNoSAT≼L

YesNoSAT ∇NP

BestClique ∈ ∇NP

BestClique = Clique∖{(G,k)| (G,k + 1) ∈ Clique}  
∈ NP

∈ ∇NP

Clique ∈ NP S |S| ≥ k S

{(G,k) ∣ (G,k + 1) ∈ Clique} ∈ NP

BestClique ∇NP

BestClique NP

r 3-SAT BestClique φ m

{φ ∈ 3-SAT⟹ r(φ) ≝ (G,m) ∈ BestClique

φ ∉ 3-SAT⟹ (G,m − 1) ∈ BestClique

⊛

⊛⊛

φ ∈ 3-SAT⟺ r(φ) ∈ BestClique BestClique NP

C r φ r G C

(x, ¬x) G

m

φ v C m

G c m c

m φ

φ m − 1 G m − 1

m

G

∇NP

http://younesse.net/Calculabilite/TD7/


We reduce  from .

Let  be two CNF formulas having respectively  and  clauses. We can ensure that  by possibly adding new tautological clauses (i.e. of the form 
, where  is a fresh variable), which doesn’t change the satisfiability of the formulas.

By denoting by  the reduction introduced in the previous lemma:

 has a largest clique of size:
 if  is satisfiable

 otherwise

And similarly for .

Then, we define:

That is:

the vertex set of  is the cartesian product of the vertex sets of  and 
in ,  and  are adjacent if and only if

 is adjacent with 
 is adjacent with 

It follows that:

Indeed, one cannot have , since it would imply that , but the function  is injective and .

The reduction is logspace since:

one computes  and  with two counters
one adds possibly one new tautological formula
to build , one only keeps a constant amount of pointers on the working tape (e.g. the current nodes of  and  considered)

On the whole, as  has been proven to be -hard in question 8, so is .

As  and  is -hard,  is -complete.

10.
As  has been shown to be in  at question 4, one has to show that it is -hard.

For all  (where ): as  is -complete, there exist two logspace reductions  such that:

If 
For all , let  be defined by:

It follows that:

If  and :

then , and

, since  and

, since  and

if , then there exists  such that

BestClique YesNoSAT

,φ1 φ2 m1 m2 ≠m1 m2

x ∨ ¬x x

r

r( ) ≝ ( , )φ1 G1 m1

m1 φ1

− 1m1

r( ≝ ( , )φ2 G2 m2

G ≝ ×G1 G1

G G1 G2

G ( , )u1 u2 ( , )v1 v2

u1 v1

u2 v2

( , ) ∈ YesNoSAT⟺ (G, ( − 1)) ∈ BestCliqueφ1 φ2 m1 m2

( − 1) = ( − 1)m1 m2 m1 m2 =
m1

−1m1

m2

−1m2
n⟼ n

n−1
≠m1 m2

m1 m2

G ≝ ×G1 G2 G1 G2

YesNoSAT ∇NP BestClique

BestClique ∈ ∇NP BestClique ∇NP BestClique ∇NP

IsolVal ∇NP ∇NP

L ≝ ∖ ∈ ∇NPL1 L2 , , , ∈ NPL1 L2 L′
1 L′

2
SubsetSum NP ,r1 r2

{ ∀w, w ∈ ⟺ (w) ≝ ({ , ⋯ , }, t) ∈ SubsetSumL1 r1 a1 ak
∀w, w ∈ ⟺ (w) ≝ ({ , ⋯ , }, ) ∈ SubsetSumL2 r2 a′

1 a′
l t′

t ≥ t′

w r(w) ≝ (e,n)

e ≝ 3 ∪ 0 + ⋯ + 3 ∪ 0a1 ak
  ≝ e1

∪ ( )3 ∪ 0 + ⋯ + 3 ∪ 0 + 3(t − ) + 1a′
1 a′

l t′  
≝ e2

n ≝ 3t

({ , ⋯ , }, t) ∈ SubsetSuma1 ak ({ , ⋯ , }, ) ∉ SubsetSuma′
1 a′

l
t′

n ≝ 3t ∈ V ( ) ⊆ V (e)e1

n − 1 = 3t − 1 ∉ V ( ) ∪ V ( ) = V (e)e1 e2 n − 1 ≡ 2 mod 3

∀m ∈ V ( ), m ≡ 0 mod 3e1

∀m ∈ V ( ), m ≡ 1 mod 3e2

n + 1 = 3t + 1 ∉ V ( ) ∪ V ( ) = V (e)e1 e2 n + 1 ≡ 1 mod 3

∀m ∈ V ( ), m ≡ 0 mod 3e1

n + 1 ∈ V ( )e2 J ⊆ [[1, l]]

3 + 3(t − ) + 1 = 3t + 1∑
j∈J

a′
j t′



i.e

which contradicts 

so 

If  or :

If , then
 (subset sum condition)

 (as argued before, due to )
so 
If , then

, since a subset sum sums to 

in either case, 

If 
We proceed similarly, with  where:

The proof is perfectly analogous, since the elements of the sets  and  have still the same value modulo .

On the whole, we have shown that

Moreover,  runs clearly in logspace, as all we do is comparing  and , before using pointers to write the NE directly on the output tape.

 is -complete.

3. A more complex reduction

11.

where

If 
Then

so that:

and the CNF-form of  is:

=∑
j∈J

a′
j t′

({ , ⋯ , }, ) ∉ SubsetSuma′
1 a′

l t′

r(w) ∈ IsolVal

({ , ⋯ , }, t) ∉ SubsetSuma1 ak ({ , ⋯ , }, ) ∈ SubsetSuma′
1 a′

l
t′

({ , ⋯ , }, t) ∉ SubsetSuma1 ak
n ∉ V ( )e1

n = 3t ∉ V ( )e2 n ≡ 0 mod 3

n ∉ V (e)

({ , ⋯ , }, ) ∈ SubsetSuma′
1 a′

l t′

n + 1 = 3t + 1 ∈ V ( )e2 t′

r(w) ∉ IsolVal

> tt′

r(w) ≝ (e,n)

e ≝ 3 ∪ 0 + ⋯ + 3 ∪ 0 + 3( − t)a1 ak t′
  ≝ e1

∪ ( )3 ∪ 0 + ⋯ + 3 ∪ 0 + 1a′
1 a′

l  
≝ e2

n ≝ 3t′

V ( )e1 V ( )e2 3

w ∈ ∖L1 L2⟺ ({ , ⋯ , }, t) ∈ SubsetSum and ({ , ⋯ , }, ) ∉ SubsetSuma1 ak a′
1 a′

l t′

⟺ r(w) ∈ IsolVal

r t t′

IsolVal ∇NP

≝ ∧ ∧SZ CZ ⋀
i

CZ
i ⋀

i≠j

DZ
i,j

≝ ∨ ⋯ ∨CZ z1 zn
≝ ∨ ⋯ ∨ ∨ ¬ ∨ ∨ ⋯ ∨CZ

i z1 zi−1 zi zi+1 zn
≝ ¬ ∨ ¬DZ

i,j zi zj

n = 0

≝⊥CZ

[[1,n]] = ∅

≝ ⊥ ∧ ∧SZ ⋀
i∈∅

CZ
i

  
=⊤

⋀
i≠j∈∅

DZ
i,j

  
=⊤

SZ

≝ ⊥SZ



Therefore , since  is unsatisfiable, and , which is the empty conjunction (that is, ) is satisfiable.

If 

 is unsatisfiable

By contradiction, if there existed a valuation  satisfying :

as  would satisfy , there would exist  such that 
but then,  satisfying  would yield another  such that 
which would contradict  satisfying 

 is satisfiable

Setting all variables to  then satisfies .

 is satisfiable

Setting all variables to  except  (which is set to ) then satisfies .

 is satisfiable

Setting all variables to  except  and  (which are set to ) then satisfies .

It has been shown that

12.
Let us reduce  from .

First, we reduce  from : as  is -hard,  is also -hard.

Indeed: for all , there exist a reduction  of  from , so that

that is

so that  is reduction of  from .

So we want to show

by reducing  from .

Let  be a CNF formula.

Firstly, one defines a formula  out of  such that  has no tautological clause, i.e. no clause containing  and  for a variable :  and the resulting  are then
equisatisfiable.

This can be done in logspace, as all the clauses are of size smaller (or equal) than : one scans through all the clauses, by writing the literals  of the current examined
clause  on the working tape, and one checks if  is tautological: as it happens,  is not considered in the following reduction ("ignored" or "eliminated" in a way).

So from now on, we will work on , and we can assume, without loss of generality, that , so that  has no tautological clauses.

Let  be defined as:

∈ AlmostSATSZ SZ S∖ ⊥ ⊤

n > 0

SZ

v SZ

v ≝ ∨ ⋯ ∨CZ z1 zn i ∈ [[1,n]] v( ) = ⊤zi
v ≝ ∨ ⋯ ∨ ∨ ¬ ∨ ∨ ⋯ ∨CZ

i z1 zi−1 zi zi+1 zn j ≠ i v( ) = ⊤zj
v ≝ ¬ ∨ ¬DZ

i,j zi zj

∖SZ CZ

⊥ ∧ = ∖⋀i C
Z
i ⋀i≠jD

Z
i,j SZ CZ

∖SZ CZ
k

⊥ zk ⊤ ∧ ∧ = ∖CZ ⋀i≠k C
Z
i ⋀i≠jD

Z
i,j SZ CZ

k

∖SZ DZ
k,l

⊥ zk zl ⊤ ∧ ∧ = ∖CZ ⋀i C
Z
i ⋀ i≠j

i,j∉{k,l}

DZ
i,j SZ DZ

k,l

∈ AlmostSATSZ

AlmostSAT coSAT

co3-SAT coSAT 3-SAT NP co3-SAT coNP

L ∈ coNP r ∈ NPL
¯ ¯¯̄

3-SAT

∀w, w ∈ ⟺ r(w) ∈ 3-SATL
¯ ¯¯̄

∀w, w ∈ L⟺ w ∉ ⟺ r(w) ∉ 3-SAT⟺ r(w) ∈ co3-SATL
¯ ¯¯̄

r L co3-SAT

coSAT co3-SAT AlmostSAT≼L ≼L

AlmostSAT co3-SAT

φ ≝ ⋀i Ci 
≝ ∨ ∨l1i l2i l3i

φ̃ φ φ̃ x ¬x x φ φ̃

3 lki
Ci Ci Ci

φ̃ = φφ̃ φ

r



where

the  are fresh variables
 is the negation of the literal 

 and  are equisatisfiable

if  is satisfied by a valuation 

then the valuation obtained out of  by setting all the  to false satisfies :

each  are satisfied due to  being satisfied
each  and  are all satisfied as well since all the  are set to false

if  is unsatisfiable

then, by contradiction, let us assume that there exists a valuation  satisfying .

NB: By abuse of notation, we extend  to any clause, so that: if 

1. For each : as  is true and  is false (  unsatisfiable): there exists  such that 
2. Then as, for all ,  is satisfied: for all 
3. So  is true, since  and for all , 
4. But for all , as  and:

for all , 

it follows that  for all , so that , which contradicts the point 3.

For all ,  is satisfiable

Let  be a valuation such that

associates anything (  or ) to all the other variables

NB:  is well-defined over the  because no clause in  is tautological, so that no two literals  are such that one is a variable and the other the negation thereof.

 satisfies :

for all , for all ,  and  are satisfied because of 
each  is satisfied because  is the only  that is set to true by : all the others are set to false

for all ,  is satisfied because of 

For all ,  is satisfiable

By setting both  and  to , and all the other  to , one easliy checks that  is satisfied.

For all ,  is satisfiable

By setting:

 and  to 

all the other  and  to 

one checks that  is satisfied:

r(φ) ≝⋀
i

∨⋁
j≠i

zj Ci

  ≝ EZ
i

∧⋀
j≠i

¬ ∨ ¬zi zj
  ≝ DZ

i,j

∧⋀
i,r

∨ ∨ ¬⋁
j≠i

zj lri
¯ ¯¯̄

zi

  ≝ CZ
i,r

zi

lri
¯ ¯¯̄

lri

φ r(φ)

φ v

v zi r(φ)

EZ
i Ci

DZ
i,j CZ

i,r zi

φ

v r(φ)

v C = , v(C) ≝ v( )⋁i li ⋁i li

i v( )EZ
i v( )Ci φ ≠ ii0 v( ) = ⊤zi0

j ≠ i0 DZ
,ji0

j ≠ , v( ) =⊥i0 zj

v( ) = ⊤Ci0
v( ) = ⊤EZ

i0
j ≠ i0 v( ) =⊥zj

r v( ) = ⊤CZ
,ri0

j ≠ i0 v( ) =⊥zj
v(¬ ) =⊥zi0

v( ) = ⊤lri0

¯ ¯¯̄¯
r v( ) =⊥Ci0

i0 r(φ)∖EZ
i0

v

v( ) = ⊤zi0

∀j ≠ , v( ) =⊥i0 zj

∀r, v( ) = ⊤lri0

¯ ¯¯̄¯

⊤ ⊥

v lri0

¯ ¯¯̄¯
φ ,lri0

¯ ¯¯̄¯
lr

′

i0

¯ ¯¯̄¯

v r(φ)∖EZ
i0

i ≠ i0 r EZ
i CZ

i,r zi0

DZ
i,j zi0

zk v

r CZ
,ri0

lri0

¯ ¯¯̄¯

,i0 j0 r(φ)∖DZ
,i0 j0

zi0
zj0

⊤ zk ⊥ r(φ)∖DZ
,i0 j0

,i0 r0 r(φ)∖CZ
,i0 r0

zi0
l
r0

i0

¯ ¯¯̄¯
⊤

zk lri0

¯ ¯¯̄¯
⊥

r(φ)∖CZ
,i0 r0



for all , for all ,  and  are satisfied because of 
each  is satisfied because  is the only  that is set to true: all the others are set to false

 is satisfied because of  satisfying 

On the whole, we have shown that:

The reduction is logspace since:

one computes the number of clauses of  with a counter
With finite number of pointers: for each clause , one writes the  and the  on the output tape, by remembering which is the current  with a counter
then, one writes the  with possibly another counter

Finally, as  and :

13.
We proceed in the same way as the previous question, the only difference being that we add the clause  to  (with the same notations as before), so
that the new  is defined as:

Let us checks that

in a similar fashion:

 is unsatisfiable
By contradiction: if a valuation  satisfies 

1. because of , there exists  such that 
2. but then, because of the , all the  for  are set to …
3. … which means, because of , that 

4. Owing to  for all :  (since  and  for  are equal to )

5. which yields a contradiction, similarly as before: as  for all , , which contradicts the point 3.

if  is satisfiable,  are satisfiable

For

the proofs go exactly as in previous question, since:

1. we didn’t assume any satisfiability property of  back then, to show these results
2. and in these demonstrations, the clause  (which was not there before) would systematically have been satisfied, since always at least one the  was set to true.

For : the proof has already been done in the previous question, just after the definition of , when we showed "  satisfiable implies  satisfiable".

if  is unsatisfiable  is unsatisfiable

i ≠ i0 r EZ
i CZ

i,r zi0

DZ
i,j zi0

zk

EZ
i0

l
r0

i0

¯ ¯¯̄¯
Ci0

φ ∈ co3-SAT⟺ r(φ) ∈ AlmostSAT

φ

Ci EZ
i CZ

i,r zi

DZ
i,j

coSAT co3-SAT≼L co3-SAT AlmostSAT≼L

co-SAT AlmostSAT≼L

≝CZ ⋁i zi r(φ)

r(φ)

r(φ) ≝⋀
i

∨⋁
j≠i

zj Ci

  ≝ EZ
i

∧⋀
j≠i

¬ ∨ ¬zi zj
  ≝ DZ

i,j

∧⋀
i,r

∨ ∨ ¬⋁
j≠i

zj lri
¯ ¯¯̄

zi

  ≝ CZ
i,r

∧⋁
i

zi

  
≝ CZ

φ ∈ SAT⟺ r(φ) ∈ AlmostSAT

r(φ)

v r(φ)

CZ i0 v( ) = ⊤zi0

DZ
i,j zj j ≠ i0 ⊥

EZ
i0

v( ) = ⊤Ci0

CZ
i,r

r v( ) = ⊤lri0

¯ ¯¯̄¯
v(¬ )zi0 v( )zj j ≠ i0 ⊥

v( ) = ⊤lri0

¯ ¯¯̄¯
r v( ) =⊥Ci0

φ r(φ)∖ , r(φ)∖ , r(φ)∖ , r(φ)∖  and r(φ)∖EZ
i0

EZ
i0

DZ
,i0 j0

CZ
,i0 r0

CZ

r(φ)∖EZ
i0

r(φ)∖EZ
i0

r(φ)∖DZ
,i0 j0

r(φ)∖CZ
,i0 r0

φ

CZ zi

r(φ)∖CZ r(φ) φ r(φ)

φ r(φ)∖CZ



Again, the proof has already been done in the previous question, just after the definition of , when we showed "  unsatisfiable implies  unsatisfiable".

On the whole, we have shown that

and this reduction, as in the previous question (the argument remain the same) is still in logspace.

Thus

14.
If  are CNF formulas, one defines

where  a fresh variable.

If , one easliy checks that:

 is unsatisfiable, as  and  are
 minus any clause is satisfiable:

 is satisfied by the valuation obtained out of the valuation satisfying  and which sets  to false (so that  is satisfied)
the other case is symmetric

If  or  is not in :

If  or  is satisfiable: so is  (by setting  appropriately, as before).
If  is unsatisfiable: so is , since any valuation satisfying  can be restricted (by forgetting ) into a valuation satisfying 

the other case is symmetric

so  is not in  either.

We have shown that

and the reduction is trivially in logspace: one only scans through the clauses and possibly adds one extra fresh variable (one counts (with one counter) the total number
of variables to do so).

Thus

15.
As  is -complete (question 8), any language in :

can be turned (in logspace) into an instance thereof
which can itself be turned (in logspace) into an intance of  (questions 12 and 13)
which can itself be turned (in logspace) into an intance of  (question 14).

As all these reductions are logspace, we use the property that  is transitive (as seen in class) to conclude that  is -hard.

As  (question 5),

 is -complete.

16.
We will show the contrapositive.

We have shown at question 9 that  is -complete (since we proved that it is -hard). So as ,  is -hard.

But:

Lemma:

1. if a -hard language  is in , then 
2. if an -hard language  is in , then 

r(φ) φ r(φ)

φ ∈ SAT⟺ r(φ) ∈ AlmostSAT

SAT AlmostSAT≼L

S ≝ , ≝⋀i Ci S ′ ⋁i C
′
i

r((S, )) ≝ ( ( ∨ x)) ∧ ( ( ∨ ¬x))S ′ ⋀
i

Ci ⋀
i

C ′
i

x

(S, ) ∈ doubleAlmostSATS ′

r((S, ))S ′ S S ′

r((S, ))S ′

r((S, ))∖( ∨ x)S ′ Ci S∖Ci x ( ∨ ¬x)⋀i C
′
i

S S ′ AlmostSAT

S S ′ r((S, ))S ′ x

S∖Ci r((S, ))∖( ∨ x)S ′ Ci ( ∨ ¬x)⋀j Cj x

= S⋀j Cj

r((S, ))S ′ AlmostSAT

(S, ) ∈ doubleAlmostSAT⟺ r((S, )) ∈ AlmostSATS ′ S ′

doubleAlmostSAT AlmostSAT≼L

YesNoSAT ∇NP ∇NP

doubleAlmostSAT

AlmostSAT

≼L AlmostSAT ∇NP

AlmostSAT ∈ ∇NP

AlmostSAT ∇NP

BestClique ∇NP NP coNP ⊆ ∇NP BestClique coNP

coNP L NP coNP = NP

NP L coNP coNP = NP

http://younesse.net/Complexity/Lecture2/


Proof of 1.:

For any language :  can be reduced to . But as , it follows that .

For any language , as ,  can be reduced to  by a logspace reduction .

Thus,

which implies that

That is,  can be logspace reduced to . But as , , and the result follows.

The proof of 2. is symmetric.

By applying the first point of this lemma to , it follows that .

17.
Again, we prove the contrapositive.

As  has been shown (question 9) to be -hard, by applying the first point of the previous lemma to , it follows that .

18.
If , by questions 16 and 17: . But by question 9, . Thus, , and since

 (question 6):

coNP ⊆ NP

∈ coNPL′ L′ L L ∈ NP ∈ NPL′

NP ⊆ coNP

∈ NPL′ ∈ coNPL′¯ ¯¯̄¯
L′¯ ¯¯̄¯

L r

∀w, w ∈ ⟺ r(w) ∈ LL′¯ ¯¯̄¯

∀w, w ∈ ⟺ w ∉ ⟺ r(w) ∉ L⟺ r(w) ∈L′ L′¯ ¯¯̄¯
L
¯ ¯¯̄

L′ L
¯ ¯¯̄

L ∈ NP ∈ coNPL
¯ ¯¯̄

L = BestClique coNP = NP

BestClique NP L = BestClique coNP = NP

coNP ≠ NP BestClique ∉ NP ∪ coNP BestClique ∈ ∇NP BestClique ∈ ∇NP ∖(NP ∪ coNP)

NP ∪ coNP ⊆ ∇NP

NP ∪ coNP ⊊ ∇NP


